A complete inorganic colour converter based on quantum-dot-embedded silicate glasses for white light-emitting-diodes

2016 ◽  
Vol 52 (17) ◽  
pp. 3564-3567 ◽  
Author(s):  
Karam Han ◽  
Won Bin Im ◽  
Jong Heo ◽  
Woon Jin Chung

A complete inorganic quantum dot color converter for a white LED is achieved using silicate-based quantum-dot-embedded glasses (QDEGs).

2010 ◽  
Vol 22 (28) ◽  
pp. 3076-3080 ◽  
Author(s):  
Eunjoo Jang ◽  
Shinae Jun ◽  
Hyosook Jang ◽  
Jungeun Lim ◽  
Byungki Kim ◽  
...  

2020 ◽  
Vol 8 (7) ◽  
pp. 1901972
Author(s):  
Thanh‐Hai Le ◽  
Yunseok Choi ◽  
Semin Kim ◽  
Unhan Lee ◽  
Eunseo Heo ◽  
...  

ACS Omega ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 3234-3243 ◽  
Author(s):  
Cheng-Chun Chou ◽  
Tzong-Liu Wang ◽  
Wen-Janq Chen ◽  
Chien-Hsin Yang

2016 ◽  
Vol 661 ◽  
pp. 228-233 ◽  
Author(s):  
Min Lu ◽  
Xue Bai ◽  
Yijun Lin ◽  
Changyin Ji ◽  
Hua Wu ◽  
...  

Nanoscale ◽  
2016 ◽  
Vol 8 (11) ◽  
pp. 5835-5841 ◽  
Author(s):  
Xin Zhao ◽  
Weizhen Liu ◽  
Rui Chen ◽  
Yuan Gao ◽  
Binbin Zhu ◽  
...  

2013 ◽  
Vol 1538 ◽  
pp. 371-375
Author(s):  
Zhao Si ◽  
Tongbo Wei ◽  
Jun Ma ◽  
Ning Zhang ◽  
Zhe Liu ◽  
...  

ABSTRACTA study about the achievement of dichromatic white light-emitting diodes (LEDs) was performed. A series of dual wavelength LEDs with different last quantum-well (LQW) structure were fabricated. The bottom seven blue light QWs (close to n-GaN layer) of the four samples were the same. The LQW of sample A was 3 nm, and that of sample B, C and D were 6 nm, a special high In content ultra-thin layer was inserted in the middle of the LQW of sample C and on top of that of sample D. XRD results showed In concentration fluctuation and good interface quality of the four samples. PL measurements showed dual wavelength emitting, the blue light peak position of the four samples were almost the same, sample A with a narrower LQW showed an emission wavelength much shorter than that of sample B, C, D. EL measurement was done at an injection current of 100 mA. Sample A only showed LQW emission due to holes distribution. Because of wider LQW, the emission wavelength of sample B, C and D was longer and peak intensity was weaker. Sample D with insert layer on top of LQW showed strongest yellow light emission with a blue peak. As the injection current increased, sample A showed highest output light power due to narrower LQW. Of the other three samples with wider LQW, sample D showed highest output power. Effective yellow light emission has always been an obstacle to the achievement of dichromatic white LED. Sample D with insert layer close to p-GaN can confine the hole distribution more effectively hence the recombination of holes and electrons was enhanced, the yellow light emission was improved and dichromatic white LED was achieved.


2015 ◽  
Vol 51 (79) ◽  
pp. 14750-14753 ◽  
Author(s):  
Guan-Hong Chen ◽  
Chang-Wei Yeh ◽  
Ming-Hua Yeh ◽  
Shih-Jung Ho ◽  
Hsueh-Shih Chen

Wide gamut LEDs using QD-silicone film protected by ALD TiO2 film. The QDs with multimodal size distribution are synthesised by a one-pot method.


Sign in / Sign up

Export Citation Format

Share Document