Intra-molecular magnetic exchange interaction in the tripyridinium bis[tetrachloroferrate(iii)] chloride molecular magnet: a broken symmetry-DFT study

2015 ◽  
Vol 17 (29) ◽  
pp. 19119-19125 ◽  
Author(s):  
F. Baniasadi ◽  
M. M. Tehranchi ◽  
M. B. Fathi ◽  
N. Safari ◽  
V. Amani

A superexchange interaction path between Fe–Fe in (FeCl4)2(py·H)3Cl is illustrated making use of electronic spin density maps (ESDM) and the magnetic coupling constant is calculated using the BS-DFT method as JFe–Fe = 13.2062 kJ mol−1.

2016 ◽  
Vol 45 (19) ◽  
pp. 8201-8214 ◽  
Author(s):  
Saurabh Kumar Singh ◽  
Kuduva R. Vignesh ◽  
Velloth Archana ◽  
Gopalan Rajaraman

Density functional calculations have been performed on a series of {ReIV–MII} (M = Mn(1), Fe(2), Co(3), Ni(4), Cu(5)) complexes to compute the magnetic exchange interaction between the ReIV and MII ions, and understand the mechanism of magnetic coupling in this series.


1998 ◽  
Vol 51 (3) ◽  
pp. 229 ◽  
Author(s):  
Philip A. Reynolds ◽  
Brian N. Figgis ◽  
Boujemaa Moubaraki ◽  
Keith S. Murray

The magnetic susceptibilities of tris(acetylacetonato)ruthenium(III) have been measured between 2·5 and 300 K along the a, b, c, and a* axis directions, together with the magnetizations along the same directions up to a magnetic field of 5 T. There is a small amount of magnetic exchange interaction apparent below 10 K, with Weiss constants up to –0·35 K and the magnetization is fitted with exchange integrals up to –0·38 K in magnitude. A pathway for magnetic exchange in terms of a pair of symmetry-related Ru(acac) rings lying parallel and close is obvious from the structure. The susceptibility results above 10 K have been interpreted in terms of a four-parameter ligand field model (CF1) operating on the ground 2T2g term of the d5 configuration. The t2g orbitals are found to be split by 475 cm-1 by a dominant trigonal symmetry component and then by –50 cm-1 by a subsidiary rhombic component. The single-electron spin-orbit coupling constant is 875 cm-1 and the orbital angular momentum reduction parameter is 0·7. The g-values deduced for the ground Kramers doublet are not in good agreement with those from e.s.r. experiments, but rather better agreement is found for closely allied ligand field parameter sets (CF2) which can fit the susceptibilities at particular temperatures but do not reproduce their temperature dependence well. Consideration of the variation of structural details with temperature indicate that, in fact, the CF2 sets may be more realistic.


2016 ◽  
Vol 18 (27) ◽  
pp. 18365-18380 ◽  
Author(s):  
Lorenzo Tenti ◽  
Daniel Maynau ◽  
Celestino Angeli ◽  
Carmen J. Calzado

A new perturbative + variational strategy: a low-cost, quantitative and rational evaluation of the magnetic coupling constant in complex systems.


2021 ◽  
pp. 30-34
Author(s):  

The possibility of changing the torque transmitted by a cylindrical magnetic coupling, depending on the brand of a high-coercive permanent magnet — neodymium— iron—boron, samarium—cobalt is considered. Using the example of standard magnetic couplings with a diameter of 133 mm for magnets and air gaps between the half couplings for magnets of 5 and 7 mm, the change in the torque transmitted by the magnetic coupling without changing its overall dimensions is shown. Varying the torque of the magnetic coupling is possible by changing the shape, size and grade of permanent magnets while keeping the same number of magnets in each of the half-couplings of the magnetic coupling constant. Keywords; magnetic coupling, permanent magnet, number of magnets. [email protected]


Sign in / Sign up

Export Citation Format

Share Document