Filling the gap between the quantum and classical worlds of nanoscale magnetism: giant molecular aggregates based on paramagnetic 3d metal ions

2016 ◽  
Vol 45 (6) ◽  
pp. 1597-1628 ◽  
Author(s):  
Constantina Papatriantafyllopoulou ◽  
Eleni E. Moushi ◽  
George Christou ◽  
Anastasios J. Tasiopoulos

The syntheses, structures and magnetic properties of giant molecular 3d and 3d/4f paramagnetic metal clusters are surveyed. Such complexes combine fascinating crystal structures, interesting magnetic properties and sizes comparable to those of classical magnetic nanoparticles providing a powerful bottom-up approach to nanoscale magnetic materials.

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Jing Chen ◽  
You-Juan Zhang ◽  
Kun-Tao Huang ◽  
Qiang Huang ◽  
Jun-Jie Wang

Two new cobalt(II) complexes of formula [Co(hfac)2(NITphtrz) 1 and Co(hfac)2(IMphtrz) 2] have been prepared and characterized structurally [where NITphtrz = 4,4,5,5-tetramethyl-2-(2-phenyl-1,2,3-triazole-4-yl)imidazoline-1-oxyl-3-oxide and IMphtrz = 4,4,5,5-tetramethyl-2-(2-phenyl-1,2,3-triazole-4-yl)imidazoline-1-oxyl]. All of the complexes crystallize in an isomorphous triclinic space group P1- with the Co(II) ion octahedrally coordinated via the bidentate chelating mode. The magnetic measurements show that two complexes exhibit antiferromagnetic interactions between the metal ions and the nitroxide radicals.


2018 ◽  
Vol 54 (29) ◽  
pp. 3559-3577 ◽  
Author(s):  
Marius Andruh

The most representative examples of coordination compounds containing three different paramagnetic metal ions are reviewed, with a special emphasis on their magnetic properties.


CrystEngComm ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 2439-2446
Author(s):  
Xian-Feng Sun ◽  
Jing-Jing Chen ◽  
Dan Gao ◽  
Li-Na Zheng ◽  
Bin Liu ◽  
...  

Three Co(ii)-MOFs have been synthesized. The desolvated frameworks of 2 and 3 exhibit good adsorption selectivity for C2H2 and CO2 over CH4 at 273 and 298 K. Moreover, 1–3 show that there exist antiferromagnetic interactions between metal ions.


Author(s):  
Elena A. Gan’shina ◽  
Vladimir V. Garshin ◽  
Nikita S. Builov ◽  
Nikolay N. Zubar ◽  
Alexandr V. Sitnikov ◽  
...  

Magnetic properties in amorphous multilayer nanostructures [(CoFeB)60C40/SiO2]200 and [(CoFeB)34(SiO2)66/C]46 with different content of the CoFeB magnetic alloy in metal-composite layers and inverse location of non-metallic phases C and SiO2 in composite layers or in interlayers, were investigated by magneto-optical methods in the transversal Kerr effect (TKE) geometry.Using the spectral and field dependences of the transversal Kerr effect TKE, it has been established that in the samples of both magnetic multilayer nanostructures (MLNS) the magneto-optical response and magnetic order are determined by the phase composition of the composite layers.In samples of MLNS [(CoFeB)60C40/SiO2]200 with a post-percolation content of metal clusters in metal-composite layers, the maximum of absolute TKE values decrease by about 2.5 times compared with the initial amorphous Co40Fe40B20 alloy, while the field dependences of TKE in samples of this MLNS has features that are characteristic of soft ferromagnets.In samples of MLNS [(CoFeB)34(SiO2)66/C]46 with a pre-percolation content of metal clusters in the oxide SiO2–x matrix of metal-composite layers, the TKE spectral dependences fundamentally differed from the TKE of the initial amorphous Co40Fe40B20 alloy both in shape and sign. The field dependences of the TKE in the samples of this MLN were linear, characteristic of superparamagnets.       References1. Neugebauer C. A. Resistivity of cermet filmscontaining oxides of silicon. Thin Solid Films. 1970;6(6):443–447. DOI: https://doi.org/10.1016/0040-6090(70)90005-22. Gittleman J. L., Goldstain Y., Bozowski S.Magnetic roperties of granular nikel films. PhysicalReview B. 1972;5(9): 3609–3621. DOI: https://doi.org/10.1103/physrevb.5.36093. Abeles B., Sheng P., Coutts M. D., Arie Y.Structural and electrical properties of granular metalfilms. Advances in Physics. 1975;24(3): 407–461. DOI:https://doi.org/10.1080/000187375001014314. Helman J. S., Abeles B. Tunneling of spinpolarizedelectrons and magnetoresistance in granularNi films. Physical Review Letters. 1976;37(21): 1429–1433. DOI: https://doi.org/10.1103/physrevlett.37.14295. Sheng P., Abeles B., Arie Y. Hopping conductivityin granular Metals. Physical Review Letters,1973;31(1):44–47. DOI: https://doi.org/10.1103/physrevlett.31.446. Domashevskaya E. P., Builov N. S., Terekhov V. A.,Barkov K. A., Sitnikov V. G. Electronic structure andphase composition of dielectric interlayers inmultilayer amorphous nanostructure [(CoFeB)60C40/SiO2]200. Physics of the Solid State. 2017;59(1): 168–173.DOI: https://doi.org/10.1134/S10637834170100617. Domashevskaya E. P., Builov N. S., Terekhov V. A.,Barkov K. I., Sitnikov V. G., Kalinin Y. E. Electronicstructure and phase composition of silicon oxide inthe metal-containing composite layers of a[(Co40Fe40B20)34(SiO2)66/C]46 multilayer amorphousnanostructure with carbon interlayers. InorganicMaterials. 2017;53(9): 930–936. DOI: https://doi.org/10.1134/S00201685170900608. Domashevskaya E. P., Builov N. S., Lukin A. N.,Sitnikov V. G. Investigation of interatomic interactionin multilayer nanostructures [(CoFeB)60C40/SiO2]200 and[(Co40Fe40B20)34(SiO2)66/C]46 with composite metalcontaininglayers by IR spectroscopy. InorganicMaterials. 2018;54(2): 153–159. DOI: https://doi.org/10.7868/s0002337x180200699. Domashevskaya E. P., Builov N. S., Ivkov S. A.,Guda A. A., Trigub A. L., Chukavin A. I. XPS and XASinvestigations of multilayer nanostructures based onthe amorphous CoFeB alloy. Journal of ElectronSpectroscopy and Related Phenomena. 2020;243:146979–146989. DOI: https://doi.org/10.1016/j.elspec.2020.14697910. Vonsovskii S. V. Magnetizm [Magnetism].Moscow: Nauka Publ.; 1971. 1032 p.11. Gan’shina E., Granovsky A., Gushin V.,Kuzmichev M., Podrugin P., Kravetz A., Shipil E. Opticaland magneto-optical spectra of magnetic granularalloys. Physica A: Statistical Mechanics and itsApplications. 1997;241(1-2): 45–51. DOI: https://doi.org/10.1016/s0378-4371(97)00057-512. Gan’shina E. A., Kim C. G., Kim C. O.,Kochneva M. Yu., Perov N. S., Sheverdyaeva P. M.Magnetostatic and magneto-optical properties of Cobasedamorphous ribbons. Journal of Magnetism andMagnetic Materials. 2002;239(1-3): 484–486. DOI:https://doi.org/10.1016/s0304-8853(01)00665-513. Gan’shina E. A., Vashuk M. V. Evolution of theoptical and magnetooptical properties of amorphousmetal-insulator nanocomposites. Journal ofExperimental and Theoretical Physics. 2004;98:1027–1036. DOI: https://doi.org/10.1134/1.176757114. Shalygina E. E., Kharlamova A. M., KurlyandskayaG. V., Svalov A. V. Exchange interaction in Co/Bi/Co thin-film systems with Bi interlayer. Journal ofMagnetism and Magnetic Materials. 2017;440: 136–139.DOI: https://doi.org/10.1016/j.jmmm.2016.12.14415. Gan’shina E., Garshin V., Perova N., Zykov G.,Aleshnikov A., Kalinin Yu., Sitnikov A. Magnetoopticalproperties of nanocomposites ferromagneticcarbon.Journal of Magnetism and Magnetic Materials.2019;470:135–138. DOI: https://doi.org/10.1016/j.jmmm.2017.11.03816. Buravtsova V. E., Ganshina E. A., Kirov S. A., et.al. Magnetooptical properties of layer-by-layerdeposited ferromagnet – dielectric nanocomposites.Materials Sciences and Applications. 2013;4(4): 16–23.DOI: http://dx.doi.org/10.4236/msa.2013.44A00317. Stognei O. V., Kalinin Yu. E., Zolotukhin I. V.,Sitnikov A. V., Wagner V., Ahlers F. J. Low temperaturebehaviour of the giant magnetoresistivity in CoFeB– SiOn granular composites. Journal of Physics:Condensed Matter. 2003;15(24): 4267–4772. DOI:https://doi.org/10.1088/0953-8984/15/24/32018. Stognei O. V., Sitnikov A. V. Anisotropy ofamorphous nanogranular composites CoNbTa-SiO nand CoFeB-SiOn. Physics Solid State. 2010;52: 2518–2526. DOI: https://doi.org/10.1134/S106378341012012719. Dunets O. V., Kalinin Y. E., Kashirin M. A. et al.Electrical and magnetic performance of multilayerstructures based on (Co40Fe40B20)33.9(SiO2)66.1 composite.Technical Physics. 2013;58: 1352–1357. DOI: https://doi.org/10.1134/S106378421309013220. Gridnev S. A., Kalinin Yu. E., Sitnikov A. V.,Stognei O. V. Nelineinye yavleniya v nano imikrogeterogennykh sistemakh [Nonlinear phenomenain nano and microheterogeneous systems]. Moscow:BINOM, Laboratoriya znanii Publ.; 2012. 352 p.21. Mørup S., Tronc E. Superparamagneticrelaxation of weakly interacting particles. PhysicalReview Letters. 1994;72(20): 3278–3285. DOI: https://doi.org/10.1103/PhysRevLett.72.327822. Coey J. M. D., Khalafalla D. Superparamagneticg-Fe2O3. Physica Status Solidi (a) 1972;11(1): 229–241.DOI: https://doi.org/10.1002/pssa.221011012523. Brown W. F. Thermal fluctuations of a singledomainparticle. Physical Review. 1963;130(5): 1677–1685. DOI: https://doi.org/10.1103/physrev.130.1677


2005 ◽  
Vol 5 ◽  
pp. 972-1001 ◽  
Author(s):  
A. Hernando ◽  
P. Crespo ◽  
M. A. García

In this paper, we reviewed some relevant aspects of the magnetic properties of metallic nanoparticles with small size (below 4 nm), covering the size effects in nanoparticles of magnetic materials, as well as the appearance of magnetism at the nanoscale in materials that are nonferromagnetic in bulk. These results are distributed along the text that has been organized around three important items: fundamental magnetic properties, different fabrication procedures, and characterization techniques. A general introduction and some experimental results recently obtained in Pd and Au nanoparticles have also been included. Finally, the more promising applications of magnetic nanoparticles in biomedicine are indicated. Special care was taken to complete the literature available on the subject.


Sign in / Sign up

Export Citation Format

Share Document