A study into the role of surface capping on energy transfer in metal cluster–semiconductor nanocomposites

Nanoscale ◽  
2015 ◽  
Vol 7 (48) ◽  
pp. 20697-20708 ◽  
Author(s):  
Dipankar Bain ◽  
Bipattaran Paramanik ◽  
Suparna Sadhu ◽  
Amitava Patra

Metal cluster–semiconductor nanocomposite materials remain a frontier area of research for the development of optoelectronic, photovoltaic and light harvesting devices because metal nanoclusters and semiconductor QDs are promising candidates for photon harvesting.

2001 ◽  
Vol 105 (44) ◽  
pp. 11016-11025 ◽  
Author(s):  
Chao-Ping Hsu ◽  
Peter J. Walla ◽  
Martin Head-Gordon ◽  
Graham R. Fleming

2020 ◽  
Vol 221 ◽  
pp. 59-76 ◽  
Author(s):  
Sue Ann Oh ◽  
David F. Coker ◽  
David A. W. Hutchinson

We review our recent work showing how important the site-to-site variation in coupling between chloroplasts in FMO and their protein scaffold environment is for energy transport in FMO and investigate the role of vibronic modes in this transport.


2017 ◽  
Vol 114 (32) ◽  
pp. 8493-8498 ◽  
Author(s):  
Hong-Guang Duan ◽  
Valentyn I. Prokhorenko ◽  
Richard J. Cogdell ◽  
Khuram Ashraf ◽  
Amy L. Stevens ◽  
...  

During the first steps of photosynthesis, the energy of impinging solar photons is transformed into electronic excitation energy of the light-harvesting biomolecular complexes. The subsequent energy transfer to the reaction center is commonly rationalized in terms of excitons moving on a grid of biomolecular chromophores on typical timescales <100 fs. Today’s understanding of the energy transfer includes the fact that the excitons are delocalized over a few neighboring sites, but the role of quantum coherence is considered as irrelevant for the transfer dynamics because it typically decays within a few tens of femtoseconds. This orthodox picture of incoherent energy transfer between clusters of a few pigments sharing delocalized excitons has been challenged by ultrafast optical spectroscopy experiments with the Fenna–Matthews–Olson protein, in which interference oscillatory signals up to 1.5 ps were reported and interpreted as direct evidence of exceptionally long-lived electronic quantum coherence. Here, we show that the optical 2D photon echo spectra of this complex at ambient temperature in aqueous solution do not provide evidence of any long-lived electronic quantum coherence, but confirm the orthodox view of rapidly decaying electronic quantum coherence on a timescale of 60 fs. Our results can be considered as generic and give no hint that electronic quantum coherence plays any biofunctional role in real photoactive biomolecular complexes. Because in this structurally well-defined protein the distances between bacteriochlorophylls are comparable to those of other light-harvesting complexes, we anticipate that this finding is general and directly applies to even larger photoactive biomolecular complexes.


2010 ◽  
Vol 114 (23) ◽  
pp. 10390-10395 ◽  
Author(s):  
Abhinandan Makhal ◽  
Soumik Sarkar ◽  
Tanujjal Bora ◽  
Sunandan Baruah ◽  
Joydeep Dutta ◽  
...  

Author(s):  
L. T. Germinario

Understanding the role of metal cluster composition in determining catalytic selectivity and activity is of major interest in heterogeneous catalysis. The electron microscope is well established as a powerful tool for ultrastructural and compositional characterization of support and catalyst. Because the spatial resolution of x-ray microanalysis is defined by the smallest beam diameter into which the required number of electrons can be focused, the dedicated STEM with FEG is the instrument of choice. The main sources of errors in energy dispersive x-ray analysis (EDS) are: (1) beam-induced changes in specimen composition, (2) specimen drift, (3) instrumental factors which produce background radiation, and (4) basic statistical limitations which result in the detection of a finite number of x-ray photons. Digital beam techniques have been described for supported single-element metal clusters with spatial resolutions of about 10 nm. However, the detection of spurious characteristic x-rays away from catalyst particles produced images requiring several image processing steps.


2011 ◽  
Vol 35 (1) ◽  
pp. 15-27
Author(s):  
Zoran Ivić ◽  
Željko Pržulj

Adiabatic large polarons in anisotropic molecular crystals We study the large polaron whose motion is confined to a single chain in a system composed of the collection of parallel molecular chains embedded in threedimensional lattice. It is found that the interchain coupling has a significant impact on the large polaron characteristics. In particular, its radius is quite larger while its effective mass is considerably lighter than that estimated within the one-dimensional models. We believe that our findings should be taken into account for the proper understanding of the possible role of large polarons in the charge and energy transfer in quasi-one-dimensional substances.


Sign in / Sign up

Export Citation Format

Share Document