A catalyst superior to carbon-supported-platinum for promotion of the oxygen reduction reaction: reduced-polyoxometalate supported palladium

2015 ◽  
Vol 3 (26) ◽  
pp. 13962-13969 ◽  
Author(s):  
Xiaohong Xie ◽  
Yao Nie ◽  
Siguo Chen ◽  
Wei Ding ◽  
Xueqiang Qi ◽  
...  

A palladium and reduced-polyoxometalate hybrid catalyst (Pd/rPOM) exhibits excellent electrocatalytic performance for ORR in alkaline media, even better than the Pt/C catalyst.

2016 ◽  
Vol 64 ◽  
pp. 9-13 ◽  
Author(s):  
Madis Lüsi ◽  
Heiki Erikson ◽  
Ave Sarapuu ◽  
Kaido Tammeveski ◽  
Jose Solla-Gullón ◽  
...  

Author(s):  
Nan Cui ◽  
Zengfeng Guo ◽  
Wenpeng Li ◽  
Xun Xu ◽  
Hongxia Zhao ◽  
...  

In this paper, we first report that WOx contained nanoalloys exhibit stable electrocatalytic performance in alkaline media, though bulk WO3 are easy to be dissolved in NaOH solutions. Carbon supported oxide-rich Pd-W alloy nanoparticles (PdW/C) with different Pd:W atom ratios were prepared by reduction-oxidation method. Among the catalysts, the oxide-rich Pd0.8W0.2/C (Pd/W = 8:2, atom ratio) exhibits the highest catalytic activity for oxygen reduction reaction. The X-ray photoelectron spectroscopy data shows that ~40% of Pd atoms and ~60% of the W atoms are in their oxides form. The Pd 3d5/2 peaks in oxide-rich Pd-W nanoalloys are positive shift compared with that of Pd/C, which indicates the electronic structure of Pd is affected by the strong interaction between Pd and W/WO3. Compare to Pd/C, the onset potential of oxygen reduction reaction at the oxide-rich Pd0.8W0.2/C is positive shifted. The current density (mA·mg Pd−1) at the oxide-rich Pd0.8W0.2/C is ~1.6 times of that at Pd/C. The oxide-rich Pd0.8W0.2/C also exhibits higher catalytic stability than Pd/C, which demonstrate that it is a prospective candidate for the cathode of fuel cells operated with alkaline electrolyte.


2020 ◽  
Vol 9 (1) ◽  
pp. 843-852
Author(s):  
Hunan Jiang ◽  
Jinyang Li ◽  
Mengni Liang ◽  
Hanpeng Deng ◽  
Zuowan Zhou

AbstractAlthough Fe–N/C catalysts have received increasing attention in recent years for oxygen reduction reaction (ORR), it is still challenging to precisely control the active sites during the preparation. Herein, we report FexN@RGO catalysts with the size of 2–6 nm derived from the pyrolysis of graphene oxide and 1,1′-diacetylferrocene as C and Fe precursors under the NH3/Ar atmosphere as N source. The 1,1′-diacetylferrocene transforms to Fe3O4 at 600°C and transforms to Fe3N and Fe2N at 700°C and 800°C, respectively. The as-prepared FexN@RGO catalysts exhibited superior electrocatalytic activities in acidic and alkaline media compared with the commercial 10% Pt/C, in terms of electrochemical surface area, onset potential, half-wave potential, number of electrons transferred, kinetic current density, and exchange current density. In addition, the stability of FGN-8 also outperformed commercial 10% Pt/C after 10000 cycles, which demonstrates the as-prepared FexN@RGO as durable and active ORR catalysts in acidic media.


ChemSusChem ◽  
2014 ◽  
Vol 7 (12) ◽  
pp. 3356-3361 ◽  
Author(s):  
Zhiming Cui ◽  
Minghui Yang ◽  
Hao Chen ◽  
Mengtian Zhao ◽  
Francis J. DiSalvo

2019 ◽  
Vol 71 ◽  
pp. 234-241 ◽  
Author(s):  
Yun Sik Kang ◽  
Yoonhye Heo ◽  
Jae Young Jung ◽  
Yeonsun Sohn ◽  
Soo-Hyoung Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document