Mesoporous TiN as a Noncarbon Support of Ag-Rich PtAg Nanoalloy Catalysts for Oxygen Reduction Reaction in Alkaline Media

ChemSusChem ◽  
2014 ◽  
Vol 7 (12) ◽  
pp. 3356-3361 ◽  
Author(s):  
Zhiming Cui ◽  
Minghui Yang ◽  
Hao Chen ◽  
Mengtian Zhao ◽  
Francis J. DiSalvo
2020 ◽  
Vol 9 (1) ◽  
pp. 843-852
Author(s):  
Hunan Jiang ◽  
Jinyang Li ◽  
Mengni Liang ◽  
Hanpeng Deng ◽  
Zuowan Zhou

AbstractAlthough Fe–N/C catalysts have received increasing attention in recent years for oxygen reduction reaction (ORR), it is still challenging to precisely control the active sites during the preparation. Herein, we report FexN@RGO catalysts with the size of 2–6 nm derived from the pyrolysis of graphene oxide and 1,1′-diacetylferrocene as C and Fe precursors under the NH3/Ar atmosphere as N source. The 1,1′-diacetylferrocene transforms to Fe3O4 at 600°C and transforms to Fe3N and Fe2N at 700°C and 800°C, respectively. The as-prepared FexN@RGO catalysts exhibited superior electrocatalytic activities in acidic and alkaline media compared with the commercial 10% Pt/C, in terms of electrochemical surface area, onset potential, half-wave potential, number of electrons transferred, kinetic current density, and exchange current density. In addition, the stability of FGN-8 also outperformed commercial 10% Pt/C after 10000 cycles, which demonstrates the as-prepared FexN@RGO as durable and active ORR catalysts in acidic media.


2019 ◽  
Vol 71 ◽  
pp. 234-241 ◽  
Author(s):  
Yun Sik Kang ◽  
Yoonhye Heo ◽  
Jae Young Jung ◽  
Yeonsun Sohn ◽  
Soo-Hyoung Lee ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (2) ◽  
pp. 1571-1580 ◽  
Author(s):  
Dongyoon Shin ◽  
Beomgyun Jeong ◽  
Myounghoon Choun ◽  
Joey D. Ocon ◽  
Jaeyoung Lee

An optimal catalyst testing methodology that could allow precise benchmarking to obtain standardized ORR activity is put forward.


Author(s):  
Chakkrapong Chaiburi ◽  
Bernd Cermenek ◽  
Birgit Elvira Pichler ◽  
Christoph Grimmer ◽  
Viktor Hacker

This paper describes electrocatalysts for the oxygen reduction reaction (ORR) in alkaline direct ethanol fuel cells (ADEFCs), using the non-noble metal electrocatalyst Ag/C, MnO2/C and AgMnO2/C. These electrocatalysts showed tolerance toward ethanol in alkaline media and therefore resistance to ethanol crossover in ADEFCs. Transmission electron microscopy, X-ray spectroscopy (EDX), cyclic voltammetry, and rotating disk electrode (RDE) were employed to determine the morphology, composition, and electrochemical activity of the catalysts. The herein presented results confirm that the AgMnO2/C electrocatalyst significantly outperforms the state-of-the art ORR catalyst platinum.


Sign in / Sign up

Export Citation Format

Share Document