Approaching the size limit of organometallic layers: synthesis and characterization of highly ordered silver–thiolate lamellae with ultra-short chain lengths

2016 ◽  
Vol 45 (47) ◽  
pp. 18954-18966 ◽  
Author(s):  
Zichao Ye ◽  
Lito P. de la Rama ◽  
Mikhail Y. Efremov ◽  
Jian-Min Zuo ◽  
Leslie H. Allen

Synthesis of single crystal silver alkanethiolate (any chain length) lamellae with highly ordered chain conformations, interlayer interfaces and intralayer lattices.

2021 ◽  
Vol 44 (3) ◽  
Author(s):  
T KALAIARASI ◽  
M SENTHILKUMAR ◽  
S SHANMUGAN ◽  
T JARIN ◽  
V CHITHAMBARAM ◽  
...  

1977 ◽  
Vol 55 (12) ◽  
pp. 2404-2410 ◽  
Author(s):  
Douglas M. Chen ◽  
Fred Y. Fujiwara ◽  
Leonard W. Reeves

The degree of order of solubilized molecules and ions in oriented lyomesophases has been determined at specifically deuterated C—D bond axes from the quadrupole splitting of the deuterium magnetic resonance. Mixtures at low concentration of specifically deuterated alkanes, alcohols, carboxylic acids, and carboxylates of different chain length have been observed in host cationic and anionic lyomesophases. The degree of order of a given C—D position in alcohols increases strongly with chain length up to a length comparable with the host detergent. A broad series of carboxylic acids and carboxylate ions from C2 to C16 have been deuterated in the α position. The α-C—D bond axis in the solubilisate increases in order with chain length, the anion having lower order than the parent acid. An accurately linear increase in the degree of order of the α position is observed for intermediate chain lengths. At chain lengths approximately equal to the host chain lengths the α position reaches a limiting value in the degree of order and further segments do not influence the order. At short chain lengths the degree of order is less than that predicted from extrapolation of order in the linear region. This has been interpreted in terms of distribution into the aqueous compartment by the solubilisates of short chain length. Acetic acid and the acetate, propionate, butanoate, and pentanoate ions spend an appreciable amount of time in the aqueous region. An estimate has been made of these distributions based on reasonable assumptions.


2008 ◽  
Vol 93 (1) ◽  
pp. 210-216 ◽  
Author(s):  
F. M. McCubbin ◽  
H. E. Mason ◽  
H. Park ◽  
B. L. Phillips ◽  
J. B. Parise ◽  
...  

Inorganics ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 97 ◽  
Author(s):  
Marie Gaschard ◽  
Farzaneh Nehzat ◽  
Thomas Cheminel ◽  
Bruno Therrien

The synthesis and characterization of three metalla-rectangles of the general formula [Ru4(η6-p-cymene)4(μ4-clip)2(μ2-Lanthr)2][CF3SO3]4 (Lanthr: 9,10-bis(3,3’-ethynylpyridyl) anthracene; clip = oxa: oxalato; dobq: 2,5-dioxido-1,4-benzoquinonato; donq: 5,8-dioxido-1,4-naphthoquinonato) are presented. The molecular structure of the metalla-rectangle [Ru4(η6-p-cymene)4(μ4-oxa)2(μ2-Lanthr)2]4+ has been confirmed by the single-crystal X-ray structure analysis of [Ru4(η6-p-cymene)4(μ4-oxa)2(μ2-Lanthr)2][CF3SO3]4 · 4 acetone (A2 · 4 acetone), thus showing the anthracene moieties to be available for reaction with oxygen. While the formation of the endoperoxide form of Lanthr was observed in solution upon white light irradiation, the same reaction does not occur when Lanthr is part of the metalla-assemblies.


Synlett ◽  
2018 ◽  
Vol 30 (01) ◽  
pp. 54-58 ◽  
Author(s):  
Timothy Swager ◽  
Cagatay Dengiz ◽  
You-Chi Wu

We report the synthesis and characterization of iptycene–naphthazarin dyes by using a sequential Diels–Alder approach. The tautomerization of naphthazarin was used as the key step in the synthesis, with structures confirmed by single-crystal X-ray and NMR analysis. The systematic trends in electronic properties were investigated by UV/Vis spectroscopy. BF2 complexes of the dyes were prepared by reaction with BF3·OEt2 in CH2Cl2.


2002 ◽  
Vol 57 (6) ◽  
pp. 621-624 ◽  
Author(s):  
Wolfgang Fraenk ◽  
Heinrich Nöth ◽  
Thomas M. Klapötke ◽  
Max Suter

AbstractTetraphenylphosphonium tetraazidoborate, [P(C6H5)4][B(N3)4], was obtained from B(N3)3 - in situ prepared from BH3 · O(C2H5)2 and HN3 - and [P(C6H5)4][N3]. Recrystallization from an acetonitrile / hexane mixture yielded colorless crystals in 60% yield. The molecular structurewas determined by single crystal X-ray diffraction and the [B(N3)4]- anionwas shown to possess S4 symmetry.


Sign in / Sign up

Export Citation Format

Share Document