scholarly journals Anisotropic lanthanide-based nano-clusters for imaging applications

2016 ◽  
Vol 191 ◽  
pp. 465-479 ◽  
Author(s):  
Xiaoping Yang ◽  
Shiqing Wang ◽  
Tyler L. King ◽  
Christopher J. Kerr ◽  
Clement Blanchet ◽  
...  

We have developed a new class of lanthanide nano-clusters that self-assemble using flexible Schiff base ligands. Cd–Ln and Ni–Ln clusters, [Ln8Cd24(L1)12(OAc)39Cl7(OH)2] (Ln = Nd, Eu), [Eu8Cd24(L1)12(OAc)44], [Ln8Cd24(L2)12(OAc)44] (Ln = Nd, Yb, Sm) and [Nd2Ni4(L3)2(acac)6(NO3)2(OH)2], were constructed using different types of flexible Schiff base ligands. These molecular nano-clusters exhibit anisotropic architectures that differ considerably depending upon the presence of Cd (nano-drum) or Ni (square-like nano-cluster). Structural characterization of the self-assembled particles has been undertaken using crystallography, transmission electron microscopy and small-angle X-ray scattering. Comparison of the metric dimensions of the nano-drums shows a consistency of size using these techniques, suggesting that these molecules may share similar structural features in both solid and solution states. Photophysical properties were studied by excitation of the ligand-centered absorption bands in the solid state and in solution, and using confocal microscopy of microspheres loaded with the compounds. The emissive properties of these compounds vary depending upon the combination of lanthanide and Cd or Ni present in these clusters. The results provide new insights into the construction of novel high-nuclearity nano-clusters and offer a promising foundation for the development of new functional nanomaterials.

2014 ◽  
Vol 29 (S1) ◽  
pp. S47-S53 ◽  
Author(s):  
Marco Sommariva ◽  
Milen Gateshki ◽  
Jan-André Gertenbach ◽  
Joerg Bolze ◽  
Uwe König ◽  
...  

X-ray diffraction and scattering on a single multipurpose X-ray platform have been used to probe the structure, composition, and thermal behavior of TiO2 nanoparticles ranging in size from 1 to 10 nm. Ambient and non-ambient Bragg diffraction, small-angle X-ray scattering (SAXS), as well as total scattering and pair-distribution function (PDF) analysis are combined to obtain a comprehensive picture of the samples. At these ultrasmall particle-size dimensions, SAXS and PDF prove powerful in distinguishing the salient features of the materials, in particular the size distribution of the primary particles (SAXS) and the identification of the TiO2 polymorphs (PDF). Structural features determined by X-ray scattering techniques are corroborated by high-resolution transmission electron microscopy. The elemental make-up of the materials has been measured using X-ray fluorescence spectrometry and energy-dispersive X-ray analysis.


2000 ◽  
Vol 24 (4) ◽  
pp. 235-241 ◽  
Author(s):  
Manuel R. Bermejo ◽  
Ana M. González ◽  
Matilde Fondo ◽  
Ana García-Deibe ◽  
Marcelino Maneiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document