Orange-red emissive Cu(I) complexes bearing Schiff base ligands: Synthesis, structures, and photophysical properties

2021 ◽  
pp. 132180
Author(s):  
Jie Lv ◽  
Qianqian Li ◽  
Jinglan Wang ◽  
Shengxian Xu ◽  
Feng Zhao ◽  
...  
2016 ◽  
Vol 191 ◽  
pp. 465-479 ◽  
Author(s):  
Xiaoping Yang ◽  
Shiqing Wang ◽  
Tyler L. King ◽  
Christopher J. Kerr ◽  
Clement Blanchet ◽  
...  

We have developed a new class of lanthanide nano-clusters that self-assemble using flexible Schiff base ligands. Cd–Ln and Ni–Ln clusters, [Ln8Cd24(L1)12(OAc)39Cl7(OH)2] (Ln = Nd, Eu), [Eu8Cd24(L1)12(OAc)44], [Ln8Cd24(L2)12(OAc)44] (Ln = Nd, Yb, Sm) and [Nd2Ni4(L3)2(acac)6(NO3)2(OH)2], were constructed using different types of flexible Schiff base ligands. These molecular nano-clusters exhibit anisotropic architectures that differ considerably depending upon the presence of Cd (nano-drum) or Ni (square-like nano-cluster). Structural characterization of the self-assembled particles has been undertaken using crystallography, transmission electron microscopy and small-angle X-ray scattering. Comparison of the metric dimensions of the nano-drums shows a consistency of size using these techniques, suggesting that these molecules may share similar structural features in both solid and solution states. Photophysical properties were studied by excitation of the ligand-centered absorption bands in the solid state and in solution, and using confocal microscopy of microspheres loaded with the compounds. The emissive properties of these compounds vary depending upon the combination of lanthanide and Cd or Ni present in these clusters. The results provide new insights into the construction of novel high-nuclearity nano-clusters and offer a promising foundation for the development of new functional nanomaterials.


2015 ◽  
Vol 12 (2) ◽  
pp. 13
Author(s):  
Muhamad Faridz Osman ◽  
Karimah Kassim

The coordination complexes of Co(II) and Zn(II) with Schiff bases derived from o-phenylenediamine and substituted 2-hydroxybenzaldehyde were prepared All compounds were characterized by Fourier transform infrared (FTIR) spectroscopy and Nuclear magnetic resonance (NMR) spectroscopy elemental analyzers. They were analyzed using impedance spectroscopy in the frequency range of 100Hz-1 MHz. LI and L2 showed higher conductivity compared to their metal complexes, which had values of 1.3 7 x 10-7 and 6.13 x 10-8 S/cm respectively. 


2019 ◽  
Author(s):  
Swaraj Sengupta ◽  
Sahanwaj Khan ◽  
Shyamal K. Chattopadhyay ◽  
Indrani Banerjee ◽  
Tarun K. Panda ◽  
...  

Synthesis and characterisation of one trinuclear copper complex, ([Cu<sub>3</sub>L<sub>3</sub>O]ClO<sub>4</sub>) (<b>1</b>) and one nickel complex ([Ni(L'H)<sub>2</sub>(dmso)<sub>2</sub>](ClO<sub>4</sub>)<sub>2</sub>) (<b>2</b>) with Schiff base ligands: (3Z)-3-((Z)-(1-(thiophen-2-yl)ethylidene)hydrazono)butan-2-one oxime (LH) and 1-(pyridin-2-yl)ethylidene)hydrazono)butan-2-one oxime (L<sup>'</sup>H). <b>1</b> shows high catecholase activity and has also been tested as a catalyst for the synthesis of benzylimine. <b>2 </b> shows phenoxazinone synthase activity.


2019 ◽  
Vol 15 (8) ◽  
pp. 850-862
Author(s):  
Mirthala Flores-García ◽  
Juan Manuel Fernández-G. ◽  
Cristina Busqueta-Griera ◽  
Elizabeth Gómez ◽  
Simón Hernández-Ortega ◽  
...  

Background: Ischemic heart disease, cerebrovascular accident, and venous thromboembolism have the presence of a thrombotic event in common and represent the most common causes of death within the population. Objective: Since Schiff base copper(II) complexes are able to interact with polyphosphates (PolyP), a procoagulant and potentially prothrombotic platelet agent, we investigated the antiplatelet aggregating properties of two novel tridentate Schiff base ligands and their corresponding copper( II) complexes. Methods: The Schiff base ligands (L1) and (L2), as well as their corresponding copper(II) complexes (C1) and (C2), were synthesized and characterized by chemical analysis, X-ray diffraction, mass spectrometry, and UV-Visible, IR and far IR spectroscopy. In addition, EPR studies were carried out for (C1) and (C2), while (L1) and (L2) were further analyzed by 1H and 13C NMR. Tests for antiplatelet aggregation activities of all of the four compounds were conducted. Results: X-ray diffraction studies show that (L1) and (L2) exist in the enol-imine tautomeric form with a strong intramolecular hydrogen bond. NMR studies show that both ligands are found as enol-imine tautomers in CDCl3 solution. In the solid state, the geometry around the copper(II) ion in both (C1) and (C2) is square planar. EPR spectra suggest that the geometry of the complexes is similar to that observed in the solid state by X-ray crystallography. Compound (C2) exhibited the strongest antiplatelet aggregation activity. Conclusion: Schiff base copper(II) complexes, which are attracting increasing interest, could represent a new approach to treat thrombosis by blocking the activity of PolyP with a potential anticoagulant activity and, most importantly, demonstrating no adverse bleeding events.


2018 ◽  
Vol 7 (1) ◽  
pp. 66-85 ◽  
Author(s):  
Eleni C. Mazarakioti ◽  
Sofia Tzani ◽  
Vassilis Psycharis ◽  
Michael Pissas ◽  
Yiannis Sanakis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document