Rational design of benzodithiophene based conjugated polymers for better solar cell performance

RSC Advances ◽  
2016 ◽  
Vol 6 (28) ◽  
pp. 23760-23774 ◽  
Author(s):  
Ranjith Krishna Pai ◽  
Ahipa T. N. ◽  
Hemavathi B.

We present a concise review of conjugated polymers based on benzodithiophenes (BDTs) for high-performance polymer solar cells (PSCs).

RSC Advances ◽  
2020 ◽  
Vol 10 (63) ◽  
pp. 38344-38350
Author(s):  
Kai Wang ◽  
Sheng Dong ◽  
Xudong Chen ◽  
Ping Zhou ◽  
Kai Zhang ◽  
...  

Ternary all-polymer solar cells are fabricated using an N2200 acceptor and two donor polymers (PF2 and PM2) with complementary absorption.


2020 ◽  
Vol 8 (24) ◽  
pp. 8191-8198
Author(s):  
Ritesh Kant Gupta ◽  
Rabindranath Garai ◽  
Mohammad Adil Afroz ◽  
Parameswar Krishnan Iyer

Fabrication of high performance polymer solar cells through the hot-casting technique, which modulates the thickness and roughness of the active layer and also the carrier mobility of the solar cell devices.


2019 ◽  
Vol 7 (40) ◽  
pp. 12641-12649 ◽  
Author(s):  
Bin Li ◽  
Qilin Zhang ◽  
Gaole Dai ◽  
Hua Fan ◽  
Xin Yuan ◽  
...  

We performed side-chain fluorination and alkylthio substituent in a template conjugated polymer and further investigate their impact on polymer–polymer solar cell performance.


2018 ◽  
Vol 51 (6) ◽  
pp. 2195-2202 ◽  
Author(s):  
Jianchao Jia ◽  
Baobing Fan ◽  
Manjun Xiao ◽  
Tao Jia ◽  
Yaocheng Jin ◽  
...  

2018 ◽  
Vol 271 ◽  
pp. 106-111
Author(s):  
Jun Ning ◽  
Ming Ming Bao ◽  
Lian Hong ◽  
Hasichaolu ◽  
Bolag Altan ◽  
...  

Research on polymer solar cells has attracted increasing attention in the past few decades due to the advantages such as low cost of fabrication, ease of processing, mechanical flexibility, etc. In recent years, non-fullerene polymer solar cells are extensively studied, because of the reduced voltage losses, and the tunability of absorption spectra and molecular energy level of non-fullerene acceptors. In this work, polymer solar cells based on conjugated polymer (PBDB-T: poly [(2,6-(4,8-bis (5-(2-ethylhexyl) thiophen-2-yl)-benzo [1,2-b:4,5-b’] dithiophene))-alt-(5,5-(1’,3’-di-2-thienyl-5’,7’-bis (2-ethylhexyl) benzo [1’,2’-c:4’,5’-c’] dithiophene-4,8-dione))]) and non-fullerene electron acceptor (ITIC: 3,9-bis (2-methylene-(3-(1,1-dicyanomethylene)-indanone)) -5,5,11,11-tetrakis (4-hexylphenyl)-dithieno [2,3-d:2’,3’-d’]-s-indaceno [1,2-b:5,6-b’] dithiophene) were prepared by means of spin-coating method, and the influence of the active layer thickness on the device performance was investigated. PBDB-T: ITIC active layers with different thickness were prepared through varying spin coating speed. It was found that the solar cell performance is best when the active layer thickness is 100 nm, corresponding to the spin coating speed of 2000 rpm. Maximum power conversion efficiency of 7.25% with fill factor of 65%, open circuit voltage of 0.85 V and short circuit current density of 13.02 Am/cm2 was obtained.


2017 ◽  
Vol 5 (16) ◽  
pp. 7300-7304 ◽  
Author(s):  
Zhaokui Zeng ◽  
Zhiquan Zhang ◽  
Bin Zhao ◽  
Hailu Liu ◽  
Xiai Sun ◽  
...  

A copolymer PDFBC-DPP with A–A structure based on difluorobenzo[c]-cinnoline is reported and achieved a PCE value of 7.92%.


2015 ◽  
Vol 3 (40) ◽  
pp. 20195-20200 ◽  
Author(s):  
Xue Gong ◽  
Guangwu Li ◽  
Cuihong Li ◽  
Jicheng Zhang ◽  
Zhishan Bo

New benzothiadiazole based conjugated polymers have been synthesized as donor materials for high efficiency polymer solar cells with a thick active layer.


Sign in / Sign up

Export Citation Format

Share Document