scholarly journals Improving the all-polymer solar cell performance by adding a narrow bandgap polymer as the second donor

RSC Advances ◽  
2020 ◽  
Vol 10 (63) ◽  
pp. 38344-38350
Author(s):  
Kai Wang ◽  
Sheng Dong ◽  
Xudong Chen ◽  
Ping Zhou ◽  
Kai Zhang ◽  
...  

Ternary all-polymer solar cells are fabricated using an N2200 acceptor and two donor polymers (PF2 and PM2) with complementary absorption.

2019 ◽  
Vol 7 (40) ◽  
pp. 12641-12649 ◽  
Author(s):  
Bin Li ◽  
Qilin Zhang ◽  
Gaole Dai ◽  
Hua Fan ◽  
Xin Yuan ◽  
...  

We performed side-chain fluorination and alkylthio substituent in a template conjugated polymer and further investigate their impact on polymer–polymer solar cell performance.


2018 ◽  
Vol 271 ◽  
pp. 106-111
Author(s):  
Jun Ning ◽  
Ming Ming Bao ◽  
Lian Hong ◽  
Hasichaolu ◽  
Bolag Altan ◽  
...  

Research on polymer solar cells has attracted increasing attention in the past few decades due to the advantages such as low cost of fabrication, ease of processing, mechanical flexibility, etc. In recent years, non-fullerene polymer solar cells are extensively studied, because of the reduced voltage losses, and the tunability of absorption spectra and molecular energy level of non-fullerene acceptors. In this work, polymer solar cells based on conjugated polymer (PBDB-T: poly [(2,6-(4,8-bis (5-(2-ethylhexyl) thiophen-2-yl)-benzo [1,2-b:4,5-b’] dithiophene))-alt-(5,5-(1’,3’-di-2-thienyl-5’,7’-bis (2-ethylhexyl) benzo [1’,2’-c:4’,5’-c’] dithiophene-4,8-dione))]) and non-fullerene electron acceptor (ITIC: 3,9-bis (2-methylene-(3-(1,1-dicyanomethylene)-indanone)) -5,5,11,11-tetrakis (4-hexylphenyl)-dithieno [2,3-d:2’,3’-d’]-s-indaceno [1,2-b:5,6-b’] dithiophene) were prepared by means of spin-coating method, and the influence of the active layer thickness on the device performance was investigated. PBDB-T: ITIC active layers with different thickness were prepared through varying spin coating speed. It was found that the solar cell performance is best when the active layer thickness is 100 nm, corresponding to the spin coating speed of 2000 rpm. Maximum power conversion efficiency of 7.25% with fill factor of 65%, open circuit voltage of 0.85 V and short circuit current density of 13.02 Am/cm2 was obtained.


RSC Advances ◽  
2016 ◽  
Vol 6 (28) ◽  
pp. 23760-23774 ◽  
Author(s):  
Ranjith Krishna Pai ◽  
Ahipa T. N. ◽  
Hemavathi B.

We present a concise review of conjugated polymers based on benzodithiophenes (BDTs) for high-performance polymer solar cells (PSCs).


2017 ◽  
Vol 8 (30) ◽  
pp. 4393-4402 ◽  
Author(s):  
Nemal S. Gobalasingham ◽  
Seyma Ekiz ◽  
Robert M. Pankow ◽  
Francesco Livi ◽  
Eva Bundgaard ◽  
...  

Direct arylation polymerization (DArP) is used to synthesize a variety of carbazole-based copolymers for evaluation in solar cells.


2014 ◽  
Vol 2 (45) ◽  
pp. 19282-19289 ◽  
Author(s):  
Zhenggang Huang ◽  
Elisa Collado Fregoso ◽  
Stoichko Dimitrov ◽  
Pabitra Shakya Tuladhar ◽  
Ying Woan Soon ◽  
...  

The performance of bulk heterojunction solar cells based on a novel donor polymer DPP-TT-T was optimised by tuning molecular weight and thermal annealing.


RSC Advances ◽  
2014 ◽  
Vol 4 (92) ◽  
pp. 50988-50992 ◽  
Author(s):  
Tao Yuan ◽  
Dong Yang ◽  
Xiaoguang Zhu ◽  
Lingyu Zhou ◽  
Jian Zhang ◽  
...  

The power conversion efficiency of a PTB7:PC71BM polymer solar cell was improved up to 9.1% by a combination of methanol treatment followed by conjugation of a water- or alcohol-soluble polyelectrolyte thin layer.


Author(s):  
Hung-Cheng Chen ◽  
Jie-Min Lan ◽  
Hsiang-Lin Hsu ◽  
Chia-Wei Li ◽  
Tien-Shou Shieh ◽  
...  

Three different benzylammonium halide (Cl, Br, and I) salts were investigated to elucidate their effects as additives on MAPbI3 perovskite surface morphology, crystal structure, optical properties, and solar cell performance and stability.


Sign in / Sign up

Export Citation Format

Share Document