Facile fabrication of sea buckthorn biocarbon (SB)@α-Fe2O3 composite catalysts and their applications for adsorptive removal of doxycycline wastewater through a cohesive heterogeneous Fenton-like regeneration

RSC Advances ◽  
2016 ◽  
Vol 6 (44) ◽  
pp. 38159-38168 ◽  
Author(s):  
Xia Zhang ◽  
Bo Bai ◽  
Honglun Wang ◽  
Yourui Suo

Novel SB@α-Fe2O3 composite catalysts were fabricated through a simple thermal conversion process from SB@β-FeOOH precursor, which maintained good adsorption capacity after five successive adsorption/heterogeneous Fenton-like regeneration cycles.

2021 ◽  
Author(s):  
Kirill B. Larionov ◽  
Albert Zh. Kaltaev ◽  
Vladimir E. Gubin ◽  
Andrey V. Zenkov

2021 ◽  
pp. 118084
Author(s):  
Ahmed M. Omer ◽  
Eman M. Abd El-Monaem ◽  
Mona M. Abd El-Latif ◽  
Gehan M. El-Subruiti ◽  
Abdelazeem S. Eltaweil

2019 ◽  
Vol 102 (11) ◽  
pp. 6449-6454
Author(s):  
Masaki Narisawa ◽  
Kouya Yamada ◽  
Ukyo Sakura ◽  
Hirofumi Inoue

2020 ◽  
Vol 44 (10) ◽  
pp. 3961-3969 ◽  
Author(s):  
Margaret D. Olawale ◽  
Adedibu C. Tella ◽  
Joshua A. Obaleye ◽  
Juwon S. Olatunji

A novel [Cu(Glu)2(H2O)]·H2O MOF proved to be an effective adsorbent for the removal of ciprofloxacin drug from aqueous solution with an adsorption capacity of 61.35 mg g−1.


2012 ◽  
Vol 232 ◽  
pp. 788-791
Author(s):  
Wan Fu Wang ◽  
Guo Li ◽  
Xing Yue Yong ◽  
Peng Liu ◽  
Xiao Fei Zhang

The microwave thermal conversion process of oil sludge was studied. It was found that the microwave thermal conversion process of oil sludge consisted of 5 stages: rapid heating, microwave drying, microwave hydrocarbons evaporation, microwave pyrolysis and microwave calcining. Using the residue produced from the microwave thermal treatment of oil sludge as a microwave absorbent can significantly accelerate the conversion. However, it does not show significant effect on the features of microwave thermal conversion. Meanwhile, the addition of residue at appropriate percentages increased oil recovery rate. The non-condensable gases consist of H2 and C1~C5 hydrocarbons. The recovered oil was mainly produced at microwave evaporation and microwave pyrolysis stages, consisting of 89% light oil and 11% heavy oil.


2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Yu Luo ◽  
Bo Bai ◽  
Honglun Wang ◽  
Yourui Suo ◽  
Yiliang Yao

Alginate has been extensively used as absorbents due to its excellent properties. However, the practical application of pure alginate has been restricted since the saturated adsorbent has weak physical structure and could not be regenerated easily. In this study, a low-cost and renewable composite MnO2@alginate/Mn adsorbent has been prepared facilely for the absorptive removal of antibiotic wastewater. FE-SEM, FTIR, and XRD analyses were used to characterize the samples. The norfloxacin (NOR) was used as an index of antibiotics. More specifically, the batch absorption efficiency of the adsorbents was evaluated by pH, contact time with different NOR concentration, and the temperature. Thus, the performance of absorption kinetic dynamics and isotherm equations were estimated for the adsorptive removal process. Parameters includingΔG0,ΔH0, andΔS0were utilized to describe the feasible adsorption process. To regenerate the saturated absorptive sites of the adsorbent, the heterogeneous Fenton-like reactions were trigged by introduction of H2O2. The results showed that the in situ regenerating has exhibited an excellent recycling stability. The high activity and the simple fabrication of the adsorbents make them attractive for the treatment of wastewater containing refractory organic compound and also provide fundamental basis and technology for further practical application.


Sign in / Sign up

Export Citation Format

Share Document