Electronic metal–support interactions enhance the ammonia synthesis activity over ruthenium supported on Zr-modified CeO2 catalysts

RSC Advances ◽  
2016 ◽  
Vol 6 (56) ◽  
pp. 51106-51110 ◽  
Author(s):  
Zhanwei Ma ◽  
Xumao Xiong ◽  
Chengli Song ◽  
Bin Hu ◽  
Weiqiang Zhang

Doping Zr4+ alters the electronic properties of the support. The electronic metal–support interaction produces the upshift of d-band center of Ru nanoparticles, which further influences the catalytic activity of ammonia synthesis.

2019 ◽  
Vol 55 (4) ◽  
pp. 474-477 ◽  
Author(s):  
Xiuyun Wang ◽  
Lingling Li ◽  
Tianhua Zhang ◽  
Bingyu Lin ◽  
Jun Ni ◽  
...  

We report a new strategy for strengthening metal–support interaction and stabilizing Co nanoparticles at high temperature.


2021 ◽  
Vol 60 ◽  
pp. 403-409
Author(s):  
Chunyan Li ◽  
Yuying Shi ◽  
Zecheng Zhang ◽  
Jun Ni ◽  
Xiuyun Wang ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 2915-2923
Author(s):  
Xilun Zhang ◽  
Lin Liu ◽  
Ji Feng ◽  
Xiaohua Ju ◽  
Jiemin Wang ◽  
...  

The activity of Ru/Sm2O3 catalyst for ammonia decomposition can be greatly improved by modulating the metal–support interaction of the catalyst.


2021 ◽  
Vol 45 (12) ◽  
pp. 5704-5711
Author(s):  
Luming Wu ◽  
Yu Hao ◽  
Shaohua Chen ◽  
Rui Chen ◽  
Pingchuan Sun ◽  
...  

Rare earth metal doped ZrO2 can promote the formation of oxygen vacancies in zirconia, which enhances the metal–support interaction, finally promoting catalytic activity of FA dehydrogenation.


Author(s):  
N.L. Torres-García ◽  
R. Huirache-Acuña ◽  
T.A. Zepeda-Partida ◽  
B. Pawelec ◽  
J.L.G. Fierro ◽  
...  

Abstract In this work, novel trimetallic catalysts based on transition metal sulphides (Ru, Mo and Ni) supported on SBA-15 were synthesized. Citric acid (CA) was used as chelating agent in order to enhance the dispersion of the active phase and minimize the metal-support interaction. Sulfided catalysts were evaluated in the reaction of hydrodesulfurization (HDS) of dibenzothiophene (DBT) at 320 °C and 54.5 atm of total H2 pressure. The effects of different Ru/(Ni + Mo) atomic ratios on the active phase were studied. The catalysts were characterized using Micro-Raman spectroscopy, DRIFTS, XRD, XPS, HR-TEM and SEM techniques. Results have shown that there was a better dispersion of the metallic phases, which improves the physicochemical properties of the catalysts, increasing the catalytic activity. The trimetallic RuxMoNi catalyst with the lowest atomic ratio, have shown superior catalytic activity compared to their higher atomic ratio counterparts. The interaction of the chelating agent improved the catalytic activity, which was superior to that observed for NiMo based catalysts, considered one of the most active hydrotreating catalysts.


2018 ◽  
Vol 54 (79) ◽  
pp. 11168-11171 ◽  
Author(s):  
Zhimin Jia ◽  
Fei Huang ◽  
Jiangyong Diao ◽  
Jiayun Zhang ◽  
Jia Wang ◽  
...  

Platinum nanoparticles (Pt NPs) immobilized on a N-doped graphene@Al2O3 hybrid support (Al2O3@CNx) were synthesized and exhibit superior catalytic activity for low temperature CO oxidation, due to a strong metal–support interaction between Pt NPs and the N-doped.


2020 ◽  
Vol 8 (32) ◽  
pp. 16676-16689 ◽  
Author(s):  
John Humphreys ◽  
Rong Lan ◽  
Shigang Chen ◽  
Shanwen Tao

The SMSI between Fe and oxygen vacancies in Ce0.8Sm0.2O2−δ helps to weaken and break the strong NN bonds in N2, increasing the catalytic activity. Materials with anion vacancies improve oxygenate tolerance property of ammonia synthesis catalysts.


Sign in / Sign up

Export Citation Format

Share Document