sulfided catalysts
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 9)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
Dao-Cheng Liu ◽  
Yu Chen ◽  
Jie-Ying Jing ◽  
Antony Rajendran ◽  
Hong-Cun Bai ◽  
...  

The saturation of octahydrophenanthrene was the rate-determining step in the hydrogenation process from phenanthrene to perhydrophenanthrene, which was due to the steric hindrance and competitive adsorption of octahydrophenanthrene. In this work, a series of Ni/NiAlOx catalysts with a uniform electron-deficient state of Ni derived from the nickel aluminate structure was synthesized to overcome the disadvantage of noble catalyst and the traditional sulfided catalysts in the saturation hydrogenation process of phenanthrene. Results showed that the catalyst calcinated at 650°C possessed more Ni2+ (∼98%) occupying octahedral sites and exhibited the highest robs (1.53 × 10−3 mol kg−1 s−1) and TOF (14.64 × 10−3 s−1) for phenanthrene hydrogenation. Furthermore, its ability to overcome steric hindrance and promote the rate-determining step was proven by octahydrophenanthrene hydrogenation. Comparing the evolution of hydrogenation activity with the change in the electronic structure of surface Ni sites, it was shown that the increase of metallic electron deficiency hindered the π-back bonding between surface Ni and aromatic rings, which was unfavorable for aromatic adsorption. As a result, the phenanthrene hydrogenation saturation performance can be enhanced by stabilizing the electron-deficient state of surface Ni on an optimal degree.


2020 ◽  
Vol 8 (40) ◽  
pp. 15149-15167 ◽  
Author(s):  
Bogdan Shumeiko ◽  
Miloš Auersvald ◽  
Petr Straka ◽  
Pavel Šimáček ◽  
Dan Vrtiška ◽  
...  
Keyword(s):  

Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 894 ◽  
Author(s):  
Esneyder Puello-Polo ◽  
Yina Pájaro ◽  
Edgar Márquez

The effect of Ga and V as support-modifier and promoter of NiMoV/Al2O3-Ga2O3 catalyst on hydrogenation (HYD) and hydrodesulfurization (HDS) activities was studied. The catalysts were characterized by elemental analysis, textural properties, XRD, XPS, EDS elemental mapping and High-resolution transmission electron microscopy (HRTEM). The chemical analyses by X-ray Fluorescence (XRF) and CHNS-O elemental analysis showed results for all compounds in agreement, within experimental accuracy, according to stoichiometric values proposed to Mo/Ni = 6 and (V+Ni)/(V+Ni+Mo) = 0.35. The sol-gel synthesis method increased the surface area by incorporation of Ga3+ ions into the Al2O3 forming Ga-O-Al bonding; whereas the impregnation synthesis method leads to decrease by blocking of alumina pores, as follows NiMoV/Al-Ga(1%-I) < NiMoV/Al-Ga(1%-SG) < NiMo/Al2O3 < Al2O3-Ga2O3(1%-I) < Al2O3-Ga2O3(1%-SG) < Al2O3, propitiating Dp-BJH between 6.18 and 7.89 nm. XRD confirmed a bulk structure typical of (NH4)4[NiMo6O24H6]•5H2O and XPS the presence at the surface of Mo4+, Mo6+, NixSy, Ni2+, Ga3+ and V5+ species, respectively. The EDS elemental mapping confirmed that Ni, Mo, Al, Ga, V and S are well-distributed on Al2O3-Ga2O3(1%-SG) support. The HRTEM analysis shows that the length and stacking distribution of MoS2 crystallites varied from 5.07 to 5.94 nm and 2.74 to 3.58 with synthesis method (SG to I). The results of the characterization sulfided catalysts showed that the synthesis method via impregnation induced largest presence of gallium on the surface influencing the dispersion V5+ species, this effect improves the dispersion of the MoS2 phase and increasing the number of active sites, which correlates well with the dibenzothiophene HDS and naphthalene HYD activities. The dibenzothiophene HDS activities with overall pseudo-first-order rate constants’ values (kHDS) from 1.65 to 7.07 L/(h·mol·m2) follow the order: NiMoV-S/Al-Ga(1%-I) < NiMo-S/Al2O3 < NiMoV-S/Al-Ga(1%-SG), whereas the rate constants’ values (k) of naphthalene HYD from 0.022 to 2.23 L/(h·mol·m2) as follow: NiMoV-S/Al-Ga(1%-SG) < NiMo-S/Al2O3 < NiMoV-S/Al-Ga(1%-I). We consider that Ga and V act as structural promoters in the NiMo catalysts supported on Al2O3 that allows the largest generation of BRIM sites for HYD and CUS sites for DDS.


2020 ◽  
Vol 63 (5-6) ◽  
pp. 529-545
Author(s):  
J. Escobar ◽  
J. Ramírez ◽  
R. Cuevas ◽  
C. Ángeles ◽  
M. C. Barrera ◽  
...  

2020 ◽  
Vol 17 (2) ◽  
pp. 141-147 ◽  
Author(s):  
Jing Liu ◽  
Yucheng Li ◽  
Jing He ◽  
Luying Wang ◽  
Jiandu Lei ◽  
...  

Conventional hydrocracking catalysts generally to retain their active form. However, sulfuration may cause sulfur dioxide emissions, corrosion, and sulfur residue in products, as plant oils become freed of sulfur compounds. The high price of this noble metal also limits industrial applications. Therefore, non-sulfided catalysts can eliminate the presulfurization step and mitigate sulfiderelated threats on both the environment and human health. The purpose of this paper is to review current developments in the species and application of inexpensive non-sulfided catalysts for the hydrocracking of non-edible Jatropha curcas L. oil. This mini-review predominantly concerns Nibased catalysts supported by rare-earth metals or heteropoly acid. These catalysts were used in the hydrotreating or hydrocracking of Jatropha oil to produce green diesel.


Catalysts ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 689 ◽  
Author(s):  
Hui Wang ◽  
Kyle Rogers ◽  
Haiping Zhang ◽  
Guoliang Li ◽  
Jianglong Pu ◽  
...  

Waste cooking oil (WCO) hydrotreating to produce green diesel is good for both the environmental protection and energy recovery problems. The roles of catalyst support and reaction temperature on reactions during WCO hydrotreating process were evaluated over an unsupported and a commercial sulfided cobalt and molybdenum (CoMoS) catalyst supported by a mixture of Al2O3, TiO2, and SiO2. The presence of catalyst support helped to improve the dispersion and enlarge the surface area of CoMoS, and was found to be a key factor in reducing reaction temperature, in enhancing the hydrodeoxygenation (HDO) and hydrogenation capabilities, and in decreasing polymerization capability. The increase of reaction temperature strongly improved the deoxygenation, hydrogenation, and cracking reaction activities. Compared to the unsupported CoMoS, the supported one exhibited good deoxygenation and hydrogenation capabilities at 340 °C in WCO hydrotreating to produce diesel fraction; however, high temperature operation needs to be carefully controlled because it may cause overcracking and dehydrogenation.


Author(s):  
N.L. Torres-García ◽  
R. Huirache-Acuña ◽  
T.A. Zepeda-Partida ◽  
B. Pawelec ◽  
J.L.G. Fierro ◽  
...  

Abstract In this work, novel trimetallic catalysts based on transition metal sulphides (Ru, Mo and Ni) supported on SBA-15 were synthesized. Citric acid (CA) was used as chelating agent in order to enhance the dispersion of the active phase and minimize the metal-support interaction. Sulfided catalysts were evaluated in the reaction of hydrodesulfurization (HDS) of dibenzothiophene (DBT) at 320 °C and 54.5 atm of total H2 pressure. The effects of different Ru/(Ni + Mo) atomic ratios on the active phase were studied. The catalysts were characterized using Micro-Raman spectroscopy, DRIFTS, XRD, XPS, HR-TEM and SEM techniques. Results have shown that there was a better dispersion of the metallic phases, which improves the physicochemical properties of the catalysts, increasing the catalytic activity. The trimetallic RuxMoNi catalyst with the lowest atomic ratio, have shown superior catalytic activity compared to their higher atomic ratio counterparts. The interaction of the chelating agent improved the catalytic activity, which was superior to that observed for NiMo based catalysts, considered one of the most active hydrotreating catalysts.


Sign in / Sign up

Export Citation Format

Share Document