The role of graphene in nano-layered structure and long-term cycling stability of MnxCoyNizCO3 as an anode material for lithium-ion batteries

RSC Advances ◽  
2016 ◽  
Vol 6 (107) ◽  
pp. 105252-105261 ◽  
Author(s):  
Qing Li ◽  
Chao Wang ◽  
Qingqing Li ◽  
Renchao Che

The prepared nano-layered MnxCoyNizCO3/graphene composite as an anode material for lithium-ion batteries demonstrated long-term cycling stability and perfect rate performance.

2020 ◽  
Vol 846 ◽  
pp. 156437
Author(s):  
Yan Zhang ◽  
Bisai Li ◽  
Bin Tang ◽  
Zeen Yao ◽  
Xiongjie Zhang ◽  
...  

2019 ◽  
Vol 3 (9) ◽  
pp. 2361-2365 ◽  
Author(s):  
Xiaoyong Dou ◽  
Ming Chen ◽  
Jiantao Zai ◽  
Zhen De ◽  
Boxu Dong ◽  
...  

Silicon (Si) has been regarded as a promising next-generation anode material to replace carbon-based materials for lithium ion batteries (LIBs).


Nanoscale ◽  
2020 ◽  
Vol 12 (32) ◽  
pp. 16901-16909
Author(s):  
Bowen Cong ◽  
Yongyuan Hu ◽  
Shanfu Sun ◽  
Yu Wang ◽  
Bo Wang ◽  
...  

A novel Fe3O4/C@VOx hierarchical nanospindle anode material for LIBs has been successfully designed and fabricated through a MOF-derived route, which delivers high coulombic efficiency, outstanding cycling stability and rate performance.


2020 ◽  
Vol 7 (14) ◽  
pp. 2651-2659 ◽  
Author(s):  
Shuting Sun ◽  
Ruhong Li ◽  
Wenhui Wang ◽  
Deying Mu ◽  
Jianchao Liu ◽  
...  

MWCNTs/Sn4P3@C with a coaxial cable-like structure demonstrates remarkable cycling stability and rate capability.


2015 ◽  
Vol 17 (3) ◽  
pp. 1580-1584 ◽  
Author(s):  
Sheng Han ◽  
Jianzhong Jiang ◽  
Yanshan Huang ◽  
Yanping Tang ◽  
Jing Cao ◽  
...  

A TiO2–SnO2–graphene aerogel hybrid is fabricated using a facile hydrothermal route, which shows excellent cycling stability and rate performance as the anode material for lithium ion batteries.


RSC Advances ◽  
2015 ◽  
Vol 5 (29) ◽  
pp. 22449-22454 ◽  
Author(s):  
Tao Shen ◽  
Xufeng Zhou ◽  
Hailiang Cao ◽  
Chao Zheng ◽  
Zhaoping Liu

The TiO2(B)–CNT–graphene ternary composite, in which graphene and CNTs construct a highly efficient conductive network, exhibits excellent rate performance and cycling stability as an anode material for Li-ion batteries.


2016 ◽  
Vol 4 (19) ◽  
pp. 7185-7189 ◽  
Author(s):  
Youguo Huang ◽  
Qichang Pan ◽  
Hongqiang Wang ◽  
Cheng Ji ◽  
Xianming Wu ◽  
...  

Sn@SnO2@C nanosheets decorated with MoS2 are prepared via a facile ball milling and hydrothermal method, and the Sn@SnO2@C@MoS2 composite shows high capacity and long-term cycling stability when used as an anode material for lithium-ion batteries.


RSC Advances ◽  
2019 ◽  
Vol 9 (31) ◽  
pp. 17835-17840 ◽  
Author(s):  
Youlin Liu ◽  
Wensheng Li ◽  
Xiaoping Zhou

Anode material Li2TiO3–coke was prepared and tested for lithium-ion batteries. The as-prepared material exhibits excellent cycling stability and outstanding rate performance.


2019 ◽  
Vol 7 (16) ◽  
pp. 9837-9843 ◽  
Author(s):  
Guohui Cai ◽  
Lei Peng ◽  
Shiyong Ye ◽  
Yucheng Huang ◽  
Guangfeng Wang ◽  
...  

The defect-rich, few-layer MoS2(1−x)Se2x endows lithium-ion batteries with better rate performance and cycling stability.


Sign in / Sign up

Export Citation Format

Share Document