High-pressure circular dichroism spectroscopy up to 400 MPa using polycrystalline yttrium aluminum garnet (YAG) as pressure-resistant optical windows

RSC Advances ◽  
2016 ◽  
Vol 6 (111) ◽  
pp. 109726-109729 ◽  
Author(s):  
Yuuya Nagata ◽  
Ryohei Takeda ◽  
Michinori Suginome

Circular dichroism (CD) spectroscopy at high pressure (≤400 MPa) was accomplished by using polycrystalline yttrium aluminum garnet (Y3Al5O12, YAG) as pressure-resistant optical windows.

2010 ◽  
Vol 38 (4) ◽  
pp. 861-873 ◽  
Author(s):  
B.A. Wallace ◽  
Robert W. Janes

CD (circular dichroism) spectroscopy is a well-established technique in structural biology. SRCD (synchrotron radiation circular dichroism) spectroscopy extends the utility and applications of conventional CD spectroscopy (using laboratory-based instruments) because the high flux of a synchrotron enables collection of data at lower wavelengths (resulting in higher information content), detection of spectra with higher signal-to-noise levels and measurements in the presence of absorbing components (buffers, salts, lipids and detergents). SRCD spectroscopy can provide important static and dynamic structural information on proteins in solution, including secondary structures of intact proteins and their domains, protein stability, the differences between wild-type and mutant proteins, the identification of natively disordered regions in proteins, and the dynamic processes of protein folding and membrane insertion and the kinetics of enzyme reactions. It has also been used to effectively study protein interactions, including protein–protein complex formation involving either induced-fit or rigid-body mechanisms, and protein–lipid complexes. A new web-based bioinformatics resource, the Protein Circular Dichroism Data Bank (PCDDB), has been created which enables archiving, access and analyses of CD and SRCD spectra and supporting metadata, now making this information publicly available. To summarize, the developing method of SRCD spectroscopy has the potential for playing an important role in new types of studies of protein conformations and their complexes.


2014 ◽  
Vol 10 ◽  
pp. 1246-1254 ◽  
Author(s):  
Zbigniew Pakulski ◽  
Norbert Gajda ◽  
Magdalena Jawiczuk ◽  
Jadwiga Frelek ◽  
Piotr Cmoch ◽  
...  

The reaction of appropriately functionalized sucrose phosphonate with sucrose aldehyde afforded a dimer composed of two sucrose units connected via their C6-positions (‘the glucose ends’). The carbonyl group in this product (enone) was stereoselectively reduced with zinc borohydride and the double bond (after protection of the allylic alcohol formed after reduction) was oxidized with osmium tetroxide to a diol. Absolute configurations of the allylic alcohol as well as the diol were determined by circular dichroism (CD) spectroscopy using the in situ dimolybdenum methodology.


2021 ◽  
Vol 6 (8) ◽  
pp. 1735-1740
Author(s):  
Sora Lee ◽  
Soo Hyun Kim ◽  
You‐Young Jo ◽  
Wan‐Taek Ju ◽  
Hyun‐Bok Kim ◽  
...  

2021 ◽  
Author(s):  
Kun Won Lee ◽  
Ahmed H. E. Hassan ◽  
Youngdo Jeong ◽  
Seolmin Yoon ◽  
Seung-Hwan Kim ◽  
...  

Enantioseparation and assignment of absolute configuration of methoxetamine (MXE) enantiopure stereoisomers; a promising novel antidepressant for management of treatment-resistant depression.


2016 ◽  
Vol 45 (18) ◽  
pp. 4859-4872 ◽  
Author(s):  
A. J. Miles ◽  
B. A. Wallace

Circular dichroism spectra of helical bundle (red), beta barrel (blue), and mixed helical/sheet/unordered (green) membrane proteins.


2006 ◽  
Vol 188 (23) ◽  
pp. 8153-8159 ◽  
Author(s):  
Kholis Abdurachim ◽  
Holly R. Ellis

ABSTRACT The two-component alkanesulfonate monooxygenase system utilizes reduced flavin as a substrate to catalyze a unique desulfonation reaction during times of sulfur starvation. The importance of protein-protein interactions in the mechanism of flavin transfer was analyzed in these studies. The results from affinity chromatography and cross-linking experiments support the formation of a stable complex between the flavin mononucleotide (FMN) reductase (SsuE) and monooxygenase (SsuD). Interactions between the two proteins do not lead to overall conformational changes in protein structure, as indicated by the results from circular dichroism spectroscopy in the far-UV region. However, subtle changes in the flavin environment of FMN-bound SsuE that occur in the presence of SsuD were identified by circular dichroism spectroscopy in the visible region. These data are supported by the results from fluorescent spectroscopy experiments, where a dissociation constant of 0.0022 ± 0.0010 μM was obtained for the binding of SsuE to SsuD. Based on these studies, the stoichiometry for protein-protein interactions is proposed to involve a 1:1 monomeric association of SsuE with SsuD.


Sign in / Sign up

Export Citation Format

Share Document