scholarly journals Highly sensitive and reliable SERS probes based on nanogap control of a Au–Ag alloy on silica nanoparticles

RSC Advances ◽  
2017 ◽  
Vol 7 (12) ◽  
pp. 7015-7021 ◽  
Author(s):  
Xuan-Hung Pham ◽  
Minwoo Lee ◽  
Seongbo Shim ◽  
Sinyoung Jeong ◽  
Hyung-Mo Kim ◽  
...  

We developed highly sensitive surface-enhanced Raman scattering (SERS) probes based on SiO2@Au@Ag nanoparticles (NPs) using the Ag growth onto Au NP seeds method.

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3523 ◽  
Author(s):  
Eunil Hahm ◽  
Yoon-Hee Kim ◽  
Xuan-Hung Pham ◽  
Bong-Hyun Jun

Alternariol (AOH) is a mycotoxin from fungi that has been found in processed foods due to its high thermal stability. To address the complexity and costs of conventional AOH detection methods, we propose an alternative based on surface-enhanced Raman scattering (SERS) and specially designed nanoparticle substrate. Herein, silver-embedded silica (SiO2@Ag) nanoparticles with a highly reproducible SERS signal were successfully developed for detecting AOH. Silica nanoparticles (~145 nm) were used as a template to deposit silver nanoparticles (~17 nm), thereby generating SiO2@Ag. The SiO2@Ag nanoparticles showed a good linearity between SERS signal intensity and AOH concentrations from 16 to 1000 nM with a limit of detection of 4.83 nM. Additionally, the SERS signal of the SiO2@Ag nanoparticles was highly reproducible, with relative standard deviations of 2.33–5.95% in the AOH concentration range from 10 to 10,000 nM, demonstrating the reliability of the proposed SERS method.


2015 ◽  
Vol 17 (11) ◽  
pp. 114019 ◽  
Author(s):  
Maximilien Cottat ◽  
Nathalie Lidgi-Guigui ◽  
Frédéric Hamouda ◽  
Bernard Bartenlian ◽  
Divya Venkataraman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document