scholarly journals Liquid crystals of hard rectangles on flat and cylindrical manifolds

2018 ◽  
Vol 20 (7) ◽  
pp. 5285-5294 ◽  
Author(s):  
Christoph E. Sitta ◽  
Frank Smallenburg ◽  
Raphael Wittkowski ◽  
Hartmut Löwen

The self-assembly of rectangular particles on flat and curved substrates was investigated using density functional theory and simulations.

2019 ◽  
Author(s):  
Emily R. Draper ◽  
Liam Wilbraham ◽  
Dave J. Adams ◽  
Matthew Wallace ◽  
Martijn Zwijnenburg

We use a combination of computational and experimental techniques to study the self-assembly and gelation of water-soluble perylene bisimides derivatised at the imide position with an amino acid. Specifically, we study the likely structure of self-assembled aggregates of the alanine-functionalised perylene bisimide (PBI-A) and the thermodynamics of their formation using density functional theory and predict the UV-vis spectra of such aggregates using time-dependent density functional theory. We compare these predictions to experiments in which we study the evolution of the UV-Vis and NMR spectra and rheology of alkaline PBI-A solutions when gradually decreasing the pH. Based on the combined computational and experimental results, we show that PBI-A self-assembles at all pH values but that aggregates grow in size upon protonation. Gelation is driven not by aggregate growth but reduction of the aggregation surface-charge and a decrease in the colloidal stability of the aggregation with respect to agglomeration.


2012 ◽  
Vol 41 (37) ◽  
pp. 11361 ◽  
Author(s):  
Zhong-Ling Lang ◽  
Wei Guan ◽  
Li-Kai Yan ◽  
Shi-Zheng Wen ◽  
Zhong-Min Su ◽  
...  

2019 ◽  
Author(s):  
Emily R. Draper ◽  
Liam Wilbraham ◽  
Dave J. Adams ◽  
Matthew Wallace ◽  
Martijn Zwijnenburg

We use a combination of computational and experimental techniques to study the self-assembly and gelation of water-soluble perylene bisimides derivatised at the imide position with an amino acid. Specifically, we study the likely structure of self-assembled aggregates of the alanine-functionalised perylene bisimide (PBI-A) and the thermodynamics of their formation using density functional theory and predict the UV-vis spectra of such aggregates using time-dependent density functional theory. We compare these predictions to experiments in which we study the evolution of the UV-Vis and NMR spectra and rheology of alkaline PBI-A solutions when gradually decreasing the pH. Based on the combined computational and experimental results, we show that PBI-A self-assembles at all pH values but that aggregates grow in size upon protonation. Gelation is driven not by aggregate growth but reduction of the aggregation surface-charge and a decrease in the colloidal stability of the aggregation with respect to agglomeration.


RSC Advances ◽  
2016 ◽  
Vol 6 (18) ◽  
pp. 15071-15079 ◽  
Author(s):  
Daniele Stradi ◽  
Bogdana Borca ◽  
Sara Barja ◽  
Manuela Garnica ◽  
Cristina Díaz ◽  
...  

Two polymorphic structures of TCNQ on Cu(111) can be formed by varying the deposition conditions.


2019 ◽  
Author(s):  
Emily R. Draper ◽  
Liam Wilbraham ◽  
Dave J. Adams ◽  
Matthew Wallace ◽  
Martijn Zwijnenburg

We use a combination of computational and experimental techniques to study the self-assembly and gelation of water-soluble perylene bisimides derivatised at the imide position with an amino acid. Specifically, we study the likely structure of self-assembled aggregates of the alanine-functionalised perylene bisimide (PBI-A) and the thermodynamics of their formation using density functional theory and predict the UV-vis spectra of such aggregates using time-dependent density functional theory. We compare these predictions to experiments in which we study the evolution of the UV-Vis and NMR spectra and rheology of alkaline PBI-A solutions when gradually decreasing the pH. Based on the combined computational and experimental results, we show that PBI-A self-assembles at all pH values but that aggregates grow in size upon protonation. Gelation is driven not by aggregate growth but reduction of the aggregation surface-charge and a decrease in the colloidal stability of the aggregation with respect to agglomeration.


Sign in / Sign up

Export Citation Format

Share Document