scholarly journals Direct cyanomethylation of aliphatic and aromatic hydrocarbons with acetonitrile over a metal loaded titanium oxide photocatalyst

2017 ◽  
Vol 7 (12) ◽  
pp. 2457-2466 ◽  
Author(s):  
Emiko Wada ◽  
Tomoaki Takeuchi ◽  
Yuki Fujimura ◽  
Akanksha Tyagi ◽  
Tatsuhisa Kato ◽  
...  

The direct cyanomethylation of aliphatic hydrocarbons proceeds with a Pt/TiO2 photocatalyst, while that of benzene requires a Pd/TiO2 hybrid catalyst.

2021 ◽  
Author(s):  
Hernando P. Bacosa ◽  
Jhonamie Abiner Mabuhay-Omar ◽  
Rodulf Anthony T. Balisco ◽  
Dawin M. Omar ◽  
Chihiro Inoue

Abstract The contamination of the environment by crude oil and its by-products, which mainly composed of aliphatic and aromatic hydrocarbons, is a widespread problem. Biodegradation by bacteria is one of the processes responsible for the removal of these pollutants. This study was conducted to determine the abilities of Burkholderia sp. B5, Ralstonia sp. B1, Pseudomonas sp. T1, and Cupriavidus sp. X5 to degrade binary mixtures of octane (representing aliphatic hydrocarbons) with benzene, toluene, ethylbenzene, or xylene (BTEX as aromatic hydrocarbons) at a final concentration of 100 ppm under aerobic conditions. These strains were isolated from an enriched bacterial consortium (Yabase or Y consortium) that prefer to degrade aromatic hydrocarbon over aliphatic hydrocarbons. We found that B5 degraded all BTEX compounds more rapidly than octane. In contrast, B1, T1 and X5 utilized more of octane over BTX compounds. B5 also preferred to use benzene over octane with varying concentrations of up to 200 mg/l. B5 possesses alkane hydroxylase (alkB) and catechol 2,3-dioxygenase (C23D) genes, which are responsible for the degradation of alkanes and aromatic hydrocarbons, respectively. This study strongly supports our notion that Burkholderia played a key role in the preferential degradation of aromatic hydrocarbons over aliphatic hydrocarbons in the previously characterized Y consortium. The preferential degradation of more toxic aromatic hydrocarbons over aliphatics is crucial in risk-based bioremediation.


2021 ◽  
Vol 11 ◽  
pp. 184798042098153
Author(s):  
Norsahika Mohd Basir ◽  
Norkhalizatul Akmal Mohd Jamil ◽  
Halimaton Hamdan

The catalytic conversion of palm oil was carried out over four zeolite catalysts—Y, ZSM-5, Y-ZSM-5 hybrid, and Y/ZSM-5 composite—to produce jet biofuel with high amount of alkanes and low amount of aromatic hydrocarbons. The zeolite Y-ZSM-5 hybrid catalyst was synthesized using crystalline zeolite Y as the seed for the growth of zeolite ZSM-5. Synthesized zeolite catalysts were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and temperature programmed desorption of ammonia, while the chemical compositions of the jet biofuel were analyzed by gas chromatography-mass spectrometry (GC-MS). The conversion of palm oil over zeolite Y resulted in the highest yield (42 wt%) of jet biofuel: a high selectivity of jet range alkanes (51%) and a low selectivity of jet range aromatic hydrocarbons (25%). Zeolite Y-ZSM-5 hybrid catalyst produced a decreased percentage of jet range alkane (30%) and a significant increase in the selectivity of aromatic hydrocarbons (57%). The highest conversion of palm oil to hydrocarbon compounds was achieved by zeolite Y-ZSM-5 hybrid catalyst (99%), followed by zeolite Y/ZSM-5 composite (96%), zeolite Y (91%), and zeolite ZSM-5 (74%). The reaction routes for converting palm oil to jet biofuel involve deoxygenation of fatty acids into C15–C18 alkanes via decarboxylation and decarbonylation, catalytic cracking into C8–C14 alkanes, and cycloalkanes as well as aromatization into aromatic hydrocarbon.


Sign in / Sign up

Export Citation Format

Share Document