scholarly journals Conversion of jet biofuel range hydrocarbons from palm oil over zeolite hybrid catalyst

2021 ◽  
Vol 11 ◽  
pp. 184798042098153
Author(s):  
Norsahika Mohd Basir ◽  
Norkhalizatul Akmal Mohd Jamil ◽  
Halimaton Hamdan

The catalytic conversion of palm oil was carried out over four zeolite catalysts—Y, ZSM-5, Y-ZSM-5 hybrid, and Y/ZSM-5 composite—to produce jet biofuel with high amount of alkanes and low amount of aromatic hydrocarbons. The zeolite Y-ZSM-5 hybrid catalyst was synthesized using crystalline zeolite Y as the seed for the growth of zeolite ZSM-5. Synthesized zeolite catalysts were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and temperature programmed desorption of ammonia, while the chemical compositions of the jet biofuel were analyzed by gas chromatography-mass spectrometry (GC-MS). The conversion of palm oil over zeolite Y resulted in the highest yield (42 wt%) of jet biofuel: a high selectivity of jet range alkanes (51%) and a low selectivity of jet range aromatic hydrocarbons (25%). Zeolite Y-ZSM-5 hybrid catalyst produced a decreased percentage of jet range alkane (30%) and a significant increase in the selectivity of aromatic hydrocarbons (57%). The highest conversion of palm oil to hydrocarbon compounds was achieved by zeolite Y-ZSM-5 hybrid catalyst (99%), followed by zeolite Y/ZSM-5 composite (96%), zeolite Y (91%), and zeolite ZSM-5 (74%). The reaction routes for converting palm oil to jet biofuel involve deoxygenation of fatty acids into C15–C18 alkanes via decarboxylation and decarbonylation, catalytic cracking into C8–C14 alkanes, and cycloalkanes as well as aromatization into aromatic hydrocarbon.

2021 ◽  
Author(s):  
Samuel Kassaye ◽  
Dinesh Gupta ◽  
Kamal. K. Pant ◽  
Sapna Jain

Abstract This study aims to valorize microcrystalline cellulose (MCC) using protonated zeolite catalysts such as (H-ZSM-5) and Cr/H-ZSM-5 (5 %) in ionic liquid. The catalytic effect in synergy with 1-butyl-3-methylimidazolium Chloride ([BMIM] Cl) ionic liquid was studied in detail. The total reducing sugar (TRS) was determined using 3, 5-dinitrisalcylic acid (DNS) array method. The catalysts were characterized using techniques such as Fourier transform infrared (FT-IR), X-ray diffraction analysis (XRD), temperature-programmed desorption of ammonia (NH3-TPD), and BET-surface area analyzer. H-ZSM-5 effectively depolymerized cellulose with a maximum yield of 70% total reducing sugar (34% glucose, 8% fructose, and 4.5% 5-HMF) Cr/H-ZSM-5 catalyst dehydrates fructose to 5-HMF with a yield of 53%. The use of ionic liquid significantly reduced the activation energy of formation and decomposition. The activation energy determined in cellulose hydrolysis was 85.83 KJ mol− 1 for a reaction time of 180 min while the decomposition energy was found to be 42.5 kJ mol− 1.


2021 ◽  
Vol 926 (1) ◽  
pp. 012083
Author(s):  
M Al Muttaqii ◽  
M Amin ◽  
E Prasetyo ◽  
R Alviany ◽  
L Marlinda

Abstract In this paper, biodiesel is produced from palm oil and methanol via the transesterification process over the heterogeneous catalyst. The metal oxide ZnO-TiO2 was impregnated into natural zeolite over the dry impregnation method. The ZnO-TiO2/NZ catalyst was prepared over the dry impregnation method. The catalysts' characteristic was characterized by X-ray diffraction (XRD) and Scanning Electron Microscope (SEM). The biodiesel was analyzed by Fourier-Transform Infrared Spectroscopy (FTIR) and Gas Chromatography-Mass Spectrometry (GC-MS). The results showed a functional group of methyl ester (C=O, carbonyl group) at 1744.51 cm-1. The components of methyl ester such as hexadecanoic acid methyl ester (C17), cis-9-heptadecanoic acid methyl ester (C18), oleic acid methyl ester (C19), are present in the biodiesel with the percent area of 0.05%, 0.08%, 0.63%, 7.06%, 16.3%, respectively, over ZnO-TiO2/NZ catalyst with a metal ratio of 1:1. This catalyst was successful in the transesterification of palm oil to produce biodiesel.


2020 ◽  
Vol 15 (1) ◽  
pp. 31-37
Author(s):  
Karfika Ainil Hawa ◽  
Zuchra Helwani ◽  
Amun Amri

A heterogeneous catalyst, such as Calcium Oxide (CaO), is widely used in biodiesel production due to its various advantages over homogeneous ones. The optimum condition for synthesizing this catalyst is determined by calcination temperature and mass ratio. As a result, a modification is required to increase its performance in improving the biodiesel yield. In this study, eggshell waste was modified by calcination, hydration, and dehydration methods integrated with activated carbon and NaOH. It is used as a heterogeneous base catalyst for off-grade palm oil transesterification reactions. The results shows the catalyst with the highest activity is obtained at calcination temperature of 800°c and mass ratio of 7 to 3. This is achieved with transesterification reaction conditions, which include a mole ratio of methanol/oil 6 to 1, catalyst concentration of 6%-b oil, and temperature 70°c for 3 hours, yielding 79.08% of the biodiesel. Additionally, CaO, Na2CO3, and Ca (OH) 2 materials were found in the catalyst with a catalyst alkalinity value of H greater than 9.3 through X-ray diffraction (XRD) analysis. Several methyl esters, such as palmitate and oleate were also found in biodiesel through Gas Chromatography-Mass Spectrometry (GC-MS) analysis.


2018 ◽  
Vol 77 (5) ◽  
pp. 1410-1417 ◽  
Author(s):  
Jinglu Xu ◽  
Yang Yu ◽  
Kang Ding ◽  
Zhiying Liu ◽  
Lei Wang ◽  
...  

Abstract This study converted sewage sludge into a carbonaceous catalyst via pyrolysis and employed it in the ozonation of hydroquinone. The catalyst was characterized by Mössbauer spectroscopy, X-ray photoelectron spectroscopy, temperature programmed desorption, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. Intermediate products were detected by gas chromatography–mass spectrometry, and a pathway for hydroquinone degradation was proposed. The results showed that sludge pyrolyzed at 700 °C promoted hydroquinone degradation, compared with commercial activated carbon derived from coal. When the catalyst dose was 0.5 g/L, the hydroquinone (200 mg/L) removal rate reached 97.86% after exposure to ozone (the ozone concentration was 17 mg/L and the flow rate was 50 mL/min) for 60 min. The results indicated that basic groups contributed to the catalysis.


Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 506 ◽  
Author(s):  
Hyung Lee ◽  
Jin Cha ◽  
Young-Kwon Park

The catalytic co-pyrolysis (CCP) of Kraft lignin (KL) with refuse-derived fuels (RDF) over HZSM-5, Ni/HZSM-5, and NiDHZSM-5 (Ni/desilicated HZSM-5) was carried out using pyrolyzer-gas chromatography/mass spectrometry (Py-GC/MS) to determine the effects of the nickel loading, desilication of HZSM-5, and co-pyrolysis of KL with RDF. The catalysts were characterized by Brunauer–Emmett–Teller surface area, X-ray diffraction, and NH3-temperature programed desorption. The nickel-impregnated catalyst improved the catalytic upgrading efficiency and increased the aromatic hydrocarbon production. Compared to KL, the catalytic pyrolysis of RDF produced larger amounts of aromatic hydrocarbons due to the higher H/Ceff ratio. The CCP of KL with RDF enhanced the production of aromatic hydrocarbons by the synergistic effect of hydrogen rich feedstock co-feeding. In particular, Ni/DHZSM-5 showed higher aromatic hydrocarbon formation owing to its higher acidity and mesoporosity.


2017 ◽  
Vol 68 (1) ◽  
pp. 116-120
Author(s):  
Iuliean Vasile Asaftei ◽  
Neculai Catalin Lungu ◽  
Lucian Mihail Birsa ◽  
Ioan Gabriel Sandu ◽  
Laura Gabriela Sarbu ◽  
...  

The conversion of n-heptanes into aromatic hydrocarbons benzene, toluene and xylenes (BTX), by the chromatographic pulse method in the temperature range of 673 - 823K was performed over the HZSM-5 and Ag-HZSM-5 zeolites modified by ion exchange with AgNO3 aqueous solutions. The catalysts, HZSM-5 (SiO2/Al2O3 = 33.9), and Ag-HZSM-5 (Ag1-HZSM-5 wt. % Ag1.02, Ag2-HZSM-5 wt. % Ag 1.62; and Ag3-HZSM-5 wt. % Ag 2.05 having different acid strength distribution exhibit a conversion and a yield of aromatics depending on temperature and metal content. The yield of aromatic hydrocarbons BTX appreciably increased by incorporating silver cations Ag+ into HZSM-5.


1991 ◽  
Vol 26 (1) ◽  
pp. 1-16 ◽  
Author(s):  
T.P. Murphy ◽  
H. Brouwer ◽  
M.E. Fox ◽  
E. Nagy

Abstract Eighty-one sediment cores were collected to determine the extent of coal tar contamination in a toxic area of Hamilton Harbour. Over 800 samples were analyzed by a UV spectrophotometric technique that was standardized with gas chromatography/mass spectrometry analysis. The coal tar distribution was variable. The highest concentrations were near the Stelco outfalls and the Hamilton-Wentworth combined sewer outfalls. The total concentration of the 16 polynuclear aromatic hydrocarbons (PAHs) in 48,300 m3 of near-surface sediments exceeded 200 µg/g.


Sign in / Sign up

Export Citation Format

Share Document