Palladium–gold single atom alloy catalysts for liquid phase selective hydrogenation of 1-hexyne

2017 ◽  
Vol 7 (19) ◽  
pp. 4276-4284 ◽  
Author(s):  
Jilei Liu ◽  
Junjun Shan ◽  
Felicia R. Lucci ◽  
Sufeng Cao ◽  
E. Charles H. Sykes ◽  
...  

Silica supported and unsupported PdAu single atom alloys (SAAs) were investigated for the selective hydrogenation of 1-hexyne to hexenes under mild conditions.

2020 ◽  
Vol 124 (44) ◽  
pp. 24271-24278
Author(s):  
Mark Muir ◽  
David L. Molina ◽  
Arephin Islam ◽  
Mohammed K. Abdel-Rahman ◽  
Michael Trenary

Author(s):  
Mohammed J. Islam ◽  
Marta Granollers Mesa ◽  
Amin Osatiashtiani ◽  
Jinesh C. Manayil ◽  
Mark A. Isaacs ◽  
...  

2018 ◽  
Vol 10 (10) ◽  
pp. 1008-1015 ◽  
Author(s):  
M. T. Greiner ◽  
T. E. Jones ◽  
S. Beeg ◽  
L. Zwiener ◽  
M. Scherzer ◽  
...  

RSC Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 62-71
Author(s):  
Qing Liu ◽  
Xiaoxu Wang ◽  
Lu Li ◽  
Keke Song ◽  
Yanzhou Wang ◽  
...  

Catalytic properties and structure evolution of a PdCu nanoalloy with a novel crown-jewel structure are explored using DFT calculations and MD simulations.


2021 ◽  
Author(s):  
Guokui Zheng ◽  
Ziqi Tian ◽  
Xingwang Zhang ◽  
Liang Chen ◽  
Xu Qian ◽  
...  

<p></p><p>Exploring electrocatalyst with high activity, selectivity and stability is essential for development of applicable electrocatalytic ammonia synthesis technology. By performing density functional theory calculations, we systematically investigated a series of transition-metal doped Au-based single atom alloys (SAAs) as promising electrocatalysts for nitrogen reduction reaction (NRR). For Au-based electrocatalyst, the first hydrogenation step (*N<sub>2</sub>→*NNH) normally determines the limiting potential of the overall reaction process. Compared with pristine Au(111) surface, introducing single atom can significantly enhance the binding strength of N<sub>2</sub>, leading to decreased energy barrier of the key step, i.e., ΔG(*N<sub>2</sub>→*NNH). According to simulation results, three descriptors were proposed to describe ΔG(*N<sub>2</sub>→*NNH), including ΔG(*NNH), <i>d</i>-band center, and . Eight doped elements (Ti, V, Nb, Ru, Ta, Os, W, and Mo) were initially screened out with limiting potential ranging from -0.75V to -0.30 V. Particularly, Mo- and W-doped systems possess the best activity with limiting potentials of -0.30 V, respectively. Then the intrinsic relationship between structure and the potential performance was further analyzed by using machine-learning. The selectivity, feasibility, stability of these candidates were also evaluated, confirming that SAA containing Mo, Ru ,Ta, and W could be outstanding NRR electrocatalysts. This work not only broadens the understating of SAA application in electrocatalysis, but also devotes to the discovery of novel NRR electrocatalysts.</p><br><p></p>


2020 ◽  
Vol 124 (26) ◽  
pp. 14158-14166 ◽  
Author(s):  
Aparajita Dasgupta ◽  
Yingjie Gao ◽  
Scott R. Broderick ◽  
E. Bruce Pitman ◽  
Krishna Rajan

2020 ◽  
Author(s):  
Abigale Monasterial ◽  
Calla Hinderks ◽  
Songkun Viriyavaree ◽  
Matthew Montemore

Single-atom alloys can be effective catalysts and have been compared to supported single-atom catalysts. To rationally design single-atom alloys and other surfaces with localized ensembles, it is crucial to understand variations in reactivity when varying the dopant and the ensemble size. Here, we examined hydrogen adsorption on surfaces embedded with localized clusters and discovered general trends. Counterintuitively, increasing the amount of a more reactive metal sometimes makes a surface site less reactive. This behavior is due to the hybridization and splitting of narrow peaks in the electronic density of states of many of these surfaces, making them analogous to free-standing nanoclusters. When a single-atom alloy has a peak just below the Fermi energy, the corresponding two-dopant cluster often has weaker adsorption than the single-atom alloy due to splitting of this peak across the Fermi energy. Further, single-atom alloys have qualitatively different behavior than larger ensembles. Specifically, the adsorption energy is a U-shaped function of the dopant’s group for single atom alloys. Additionally, adsorption energies on single atom alloys correlate more strongly with the dopant’s p-band center than the d-band center.


Sign in / Sign up

Export Citation Format

Share Document