scholarly journals Intramolecular stabilization of a catalytic [FeFe]-hydrogenase mimic investigated by experiment and theory

2018 ◽  
Vol 47 (14) ◽  
pp. 4941-4949 ◽  
Author(s):  
Indresh Kumar Pandey ◽  
Mookan Natarajan ◽  
Hemlata Faujdar ◽  
Firasat Hussain ◽  
Matthias Stein ◽  
...  

A dinuclear [FeFe] complex was prepared based on the design principles from the two families of hydrogenase enzymes and is internally stabilized by weak interactions to enhance hydrogen production.

2020 ◽  
Vol 49 (21) ◽  
pp. 7182-7188
Author(s):  
Jorge Salinas-Uber ◽  
Leoní A. Barrios ◽  
Olivier Roubeau ◽  
Guillem Aromí

A new highly photo-switchable ligand furnishes supramolecular tetrahedral nanomagnets with Ln(iii) ions (Ln = Dy, Tb). Intramolecular weak interactions define the conformation of the ligand, quenching the photochromic activity.


2020 ◽  
Vol 48 (2) ◽  
pp. 399-409
Author(s):  
Baizhen Gao ◽  
Rushant Sabnis ◽  
Tommaso Costantini ◽  
Robert Jinkerson ◽  
Qing Sun

Microbial communities drive diverse processes that impact nearly everything on this planet, from global biogeochemical cycles to human health. Harnessing the power of these microorganisms could provide solutions to many of the challenges that face society. However, naturally occurring microbial communities are not optimized for anthropogenic use. An emerging area of research is focusing on engineering synthetic microbial communities to carry out predefined functions. Microbial community engineers are applying design principles like top-down and bottom-up approaches to create synthetic microbial communities having a myriad of real-life applications in health care, disease prevention, and environmental remediation. Multiple genetic engineering tools and delivery approaches can be used to ‘knock-in' new gene functions into microbial communities. A systematic study of the microbial interactions, community assembling principles, and engineering tools are necessary for us to understand the microbial community and to better utilize them. Continued analysis and effort are required to further the current and potential applications of synthetic microbial communities.


1982 ◽  
Vol 43 (C8) ◽  
pp. C8-261-C8-300
Author(s):  
E. Amaldi
Keyword(s):  

2020 ◽  
pp. 124-135
Author(s):  
I. N. G. Wardana ◽  
N. Willy Satrio

Tofu is main food in Indonesia and its waste generally pollutes the waters. This study aims to change the waste into energy by utilizing the electric charge in the pores of tofu waste to produce hydrogen in water. The tofu pore is negatively charged and the surface surrounding the pore has a positive charge. The positive and negative electric charges stretch water molecules that have a partial charge. With the addition of a 12V electrical energy during electrolysis, water breaks down into hydrogen. The test was conducted on pre-treated tofu waste suspension using oxalic acid. The hydrogen concentration was measured by a MQ-8 hydrogen sensor. The result shows that the addition of turmeric together with sodium bicarbonate to tofu waste in water, hydrogen production increased more than four times. This is due to the fact that magnetic field generated by delocalized electron in aromatic ring in turmeric energizes all electrons in the pores of tofu waste, in the sodium bicarbonate, and in water that boosts hydrogen production. At the same time the stronger partial charge in natrium bicarbonate shields the hydrogen proton from strong attraction of tofu pores. These two combined effect are very powerful for larger hydrogen production in water by tofu waste.


Sign in / Sign up

Export Citation Format

Share Document