Discotic columnar liquid-crystalline polymer semiconducting materials with high charge-carrier mobility via rational macromolecular engineering

2017 ◽  
Vol 8 (21) ◽  
pp. 3286-3293 ◽  
Author(s):  
Bin Mu ◽  
Xingtian Hao ◽  
Jian Chen ◽  
Qian Li ◽  
Chunxiu Zhang ◽  
...  

Well-prepared side-chain discotic liquid crystal polymers with shorter spacers in ordered columnar phases are fascinating and promising cost-effective, solution-processable organic semiconducting materials for various potential optoelectronic device applications.

2012 ◽  
Vol 1 (5) ◽  
pp. 641-645 ◽  
Author(s):  
Jun-Feng Zheng ◽  
Xin Liu ◽  
Xiao-Fang Chen ◽  
Xiang-Kui Ren ◽  
Shuang Yang ◽  
...  

2021 ◽  
Vol 22 (21) ◽  
pp. 11980
Author(s):  
Tengfei Miao ◽  
Xiaoxiao Cheng ◽  
Yilin Qian ◽  
Yaling Zhuang ◽  
Wei Zhang

Flexible construction of permanently stored supramolecular chirality with stimulus-responsiveness remains a big challenge. Herein, we describe an efficient method to realize the transfer and storage of chirality in intrinsically achiral films of a side-chain polymeric liquid crystal system by combining chiral doping and cross-linking strategy. Even the helical structure was destroyed by UV light irradiation, the memorized chiral information in the covalent network enabled complete self-recovery of the original chiral superstructure. These results allowed the building of a novel chiroptical switch without any additional chiral source in multiple types of liquid crystal polymers, which may be one of the competitive candidates for use in stimulus-responsive chiro-optical devices.


2001 ◽  
Vol 709 ◽  
Author(s):  
Valery P. Shibaev ◽  
Alexey Yu. Bobrovsky ◽  
Natalia I. Boiko

ABSTRACTA new family of light-controllable chiral photochromic multifunctional liquid crystalline (LC) side-chain acrylic polymers consisting of nematogenic, chiral and photochromic monomer units was obtained. The new principle of photoregulation of the helical supramolecular structure and optical properties of the binary and ternary chiral photochromic LC polymers based on the change of helical twisting power of the chiral photochromic monomer units was developed. The features of photooptical behaviour of LC polymers possessing the dual photochromism and the peculiarities of optical data recording based on the photochemical spectral gap burning were presented and discussed. The synthesized polymers are shown to be promising candidates for colour data recording and storage.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 356 ◽  
Author(s):  
Ivan Budagovsky ◽  
Aleksey Kuznetsov ◽  
Sergey Shvetsov ◽  
Mikhail Smayev ◽  
Alexander Zolot’ko ◽  
...  

Dye-doped nematic side-chain liquid-crystalline polymers possess extraordinary large optical nonlinearity and ability to store the induced orientational deformations in a glassy state, which makes them a very promising material for photonic applications. In this study, the phase structures were generated and recorded in the bulk of a 50-μm layer of a nematic liquid-crystalline side-chain polymer, containing polyacrylate backbone, spacer having five methylene groups, and phenyl benzoate mesogenic fragment. The polymer was doped with KD-1 azodye. The director field deformations induced by the light beam close to the TEM01 mode were studied for different geometries of light–polymer interaction. The phase modulation depth of 2π was obtained for the 18-μm spacing between intensity peaks. The experimental data were analyzed based on the elastic continuum theory of nematics. The possibility to induce and record positive and negative microlenses in the polymer bulk was shown experimentally.


Sign in / Sign up

Export Citation Format

Share Document