scholarly journals Improved electromechanical properties of brominated butyl rubber filled with modified barium titanate

RSC Advances ◽  
2017 ◽  
Vol 7 (59) ◽  
pp. 37148-37157 ◽  
Author(s):  
Mengnan Ruan ◽  
Dan Yang ◽  
Wenli Guo ◽  
Shuo Huang ◽  
Yibo Wu ◽  
...  

Barium titanate (BT) particles, BT-KH570 particles, and polar plasticizer tri-n-butyl phosphate (TBP) were added into BIIR matrix to form a dielectric elastomer composite, which had a high dielectric constant, good mechanical properties, and large actuated strain.

RSC Advances ◽  
2020 ◽  
Vol 10 (49) ◽  
pp. 29278-29286
Author(s):  
Taehee Kim ◽  
Hanwhuy Lim ◽  
Youngkwan Lee ◽  
Baek-Jin Kim

Coral-like structured barium titanate (BaTiO3) nanoparticles were synthesized as filler for a high dielectric elastomer.


2010 ◽  
Vol 20 (19) ◽  
pp. 3280-3291 ◽  
Author(s):  
Martin Molberg ◽  
Daniel Crespy ◽  
Patrick Rupper ◽  
Frank Nüesch ◽  
Jan-Anders E. Månson ◽  
...  

2020 ◽  
Vol 8 (44) ◽  
pp. 23330-23343
Author(s):  
Haibin Sun ◽  
Xueying Liu ◽  
Suting Liu ◽  
Bing Yu ◽  
Nanying Ning ◽  
...  

A silicone dielectric elastomer with simultaneous high dielectric constant, fast and efficient self-healing ability at mild conditions was prepared by constructing supramolecular network assembled by coordination bonds and hydrogen bonds.


2017 ◽  
Vol 898 ◽  
pp. 2101-2106
Author(s):  
Zhong Yang Wang ◽  
Xin Yan Li ◽  
Run Hua Fan ◽  
Pei Tao Xie ◽  
Kai Sun ◽  
...  

Conductor–insulator composites have been extensive researched for high dielectric constant. Most of them concentrated on metal polymers or metal ceramics. Barium titanate–carbon fibers composites were prepared by using a solid state reaction process with carbon fibers contents ranging from7 vol% to 23 vol%. Due to the high-aspect-ratio of carbon fiber, it was easy to produce a conducting network at much lower volume fraction. FESEM images illustrated that the carbon fibers influenced the densification and microstructure of the ceramics. Besides, addition of carbon fibers led to increase in dielectric permittivity, also had effects on the dielectric loss and ac conductivity. The dielectric and conductivity properties as a function of carbon fibers volume fraction were explained by the percolation theory.


Sign in / Sign up

Export Citation Format

Share Document