scholarly journals A mechanistic study of ethanol transformation into ethene and acetaldehyde on an oxygenated Au-exchanged ZSM-5 zeolite

RSC Advances ◽  
2017 ◽  
Vol 7 (60) ◽  
pp. 38052-38058 ◽  
Author(s):  
Yuwanda Injongkol ◽  
Thana Maihom ◽  
Saowapak Choomwattana ◽  
Bundet Boekfa ◽  
Jumras Limtrakul

Ethanol transformation to ethene and acetaldehyde over low- and high-spin state oxygenated Au-exchanged ZSM-5 zeolite have been investigated by means of density functional calculations with the M06-L functional.

Author(s):  
Raphael Johann Friedrich Berger ◽  
Georgiy V. Girichev ◽  
Angelika A. Petrova ◽  
Valery V. Sliznev ◽  
Nataliya V. Tverdova ◽  
...  

Quantum chemical calculations of the geometric structure, force fields and harmonic vibration frequencies of the molecule Mn(acac)3 for electronic states with multiplicities M = 1, 3 and 5 were performed using the GAUSSIAN 09 program in the framework of density functional theory (DFT/UB3LYP) with correlation-consistent valence three-exponential basis functions cc-pVTZ. The structure with high-spin state S=2 (symmetry of electronic state 5B) possesses the lowest energy and it is characterized by C2 symmetry. The coordination polyhedron MnO6 possesses the shape of “elongated octahedron”. The high-spin state 5A is characterized by structure of compressed octahedron. The distortion of octahedral structure of coordination polyhedron in the states 5A and 5B is significant, and this fact testifies to the strong Jahn-Teller effect, or vibronic effect, in 5E electronic state. The calculations for low-spin state S=0 are notable for some specifics. The optimization resulted in C2 symmetry of molecule having the symmetry of electronic state 1B. The bond distances Mn-O within 0.001 Å were equal to values obtained for structure with D3 symmetry with S=1. This result corresponds to the situation if two electrons occupy different 1e orbitals possessing opposite spins. The spin states 3A2 and 1B lie higher than the high-spin state by 5.2 and 17.3 kcal/mol, respectively. The structural features are explained well in a framework of simple crystal field theory indicating that d-orbitals of Mn3+ ion undergo the significant influence of ligand field.Forcitation:Berger R.J.F., Girichev G.V., Giricheva N.I., Petrova A.A., Sliznev V.V., Tverdova N.V. Molecular structure of manganese tris-acetylacetonate in different spin states. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 4. P. 47-53.


Energy ◽  
2019 ◽  
Vol 189 ◽  
pp. 116286 ◽  
Author(s):  
Hai Zhang ◽  
Lei Luo ◽  
Jiaxun Liu ◽  
Anyao Jiao ◽  
Jianguo Liu ◽  
...  

2007 ◽  
Vol 63 (a1) ◽  
pp. s202-s202
Author(s):  
U. Pietsch ◽  
M. Lommel ◽  
Y. Bodethin ◽  
D. Kurth ◽  
G. Schwarzl ◽  
...  

Author(s):  
Guangxin Song ◽  
Rui Gao ◽  
Zhao Zhao ◽  
Yujun Zhang ◽  
Huaqiao Tan ◽  
...  

2019 ◽  
Vol 2 (4) ◽  
pp. 1900005 ◽  
Author(s):  
Carlos O. Amorim ◽  
João S. Amaral ◽  
João N. Gonçalves ◽  
Vítor S. Amaral

2017 ◽  
Vol 8 ◽  
pp. 2484-2491 ◽  
Author(s):  
Hao Tang ◽  
Nathalie Tarrat ◽  
Véronique Langlais ◽  
Yongfeng Wang

The adsorption of the iron tetraphenylporphyrin (FeTPP) molecule in its deckchair conformation was investigated on Au(111), Ag(111) and Cu(111) surfaces by performing spin-polarized density functional theory (DFT) calculations taking into account both van der Waals (vdW) interaction and on-site Coulomb repulsion. The deckchair conformation of the molecule favours intermolecular π–π-type interactions in a less densely packed monolayer than the saddle conformation. The activation barrier between the two stable magnetic states (high spin, S = 2 and intermediate spin, S = 1) of the molecule in vacuum disappears upon adsorption on the metal surfaces. The high-spin state of physisorbed FeTPP is stable on all adsorption sites. This result reveals that an external permanent element such as a STM tip or an additional molecule is needed to use FeTPP or similar molecules as model system for molecular spin switches.


2009 ◽  
Vol 121 (39) ◽  
pp. 7320-7323 ◽  
Author(s):  
Cristina Consani ◽  
Mirabelle Prémont-Schwarz ◽  
Amal ElNahhas ◽  
Christian Bressler ◽  
Frank van Mourik ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document