All-solid-state lithium–sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor

2017 ◽  
Vol 5 (13) ◽  
pp. 6310-6317 ◽  
Author(s):  
Ruo-chen Xu ◽  
Xin-hui Xia ◽  
Shu-han Li ◽  
Sheng-zhao Zhang ◽  
Xiu-li Wang ◽  
...  

A lithium superionic conductor of Li7P2.9Mn0.1S10.7I0.3 as solid electrolyte was successfully prepared via high-energy milling, possessing high ionic conductivity and excellent electrochemical stability. The prepared all solid state LSBs shows a large capacity of 796 mA h g−1 with good cycling stability.

2017 ◽  
Vol 5 (6) ◽  
pp. 2829-2834 ◽  
Author(s):  
Ruo-chen Xu ◽  
Xin-hui Xia ◽  
Xiu-li Wang ◽  
Yan Xia ◽  
Jiang-ping Tu

A novel high-quality MoS2-doped Li2S–P2S5glass-ceramic electrolyte (Li7P2.9S10.85Mo0.01) is successfully prepared by a facile combined method of high-energy ball milling plus annealing. The Li7P2.9S10.85Mo0.01electrolyte shows a high ionic conductivity and excellent electrochemical stability.


2020 ◽  
Vol 380 ◽  
pp. 122419 ◽  
Author(s):  
Zhijun Wu ◽  
Zhengkun Xie ◽  
Akihiro Yoshida ◽  
Xiaowei An ◽  
Zhongde Wang ◽  
...  

2020 ◽  
Vol 117 (26) ◽  
pp. 14712-14720 ◽  
Author(s):  
Chao Luo ◽  
Enyuan Hu ◽  
Karen J. Gaskell ◽  
Xiulin Fan ◽  
Tao Gao ◽  
...  

Lithium sulfur batteries (LSBs) are promising next-generation rechargeable batteries due to the high gravimetric energy, low cost, abundance, nontoxicity, and high sustainability of sulfur. However, the dissolution of high-order polysulfide in electrolytes and low Coulombic efficiency of Li anode require excess electrolytes and Li metal, which significantly reduce the energy density of LSBs. Quasi-solid-state LSBs, where sulfur is encapsulated in the micropores of carbon matrix and sealed by solid electrolyte interphase, can operate under lean electrolyte conditions, but a low sulfur loading in carbon matrix (<40 wt %) and low sulfur unitization (<70%) still limit the energy density in a cell level. Here, we significantly increase the sulfur loading in carbon to 60 wt % and sulfur utilization to ∼87% by dispersing sulfur in an oxygen-rich dense carbon host at a molecular level through strong chemical interactions of C–S and O–S. In an all-fluorinated organic lean electrolyte, the C/S cathode experiences a solid-state lithiation/delithiation reaction after the formation of solid electrolyte interphase in the first deep lithiation, completely avoiding the shuttle reaction. The chemically stabilized C/S composite retains a high reversible capacity of 541 mAh⋅g−1(based on the total weight of the C/S composite) for 200 cycles under lean electrolyte conditions, corresponding to a high energy density of 974 Wh⋅kg−1. The superior electrochemical performance of the chemical bonding-stabilized C/S composite renders it a promising cathode material for high-energy and long-cycle-life LSBs.


Nanoscale ◽  
2021 ◽  
Author(s):  
Feihu Tan ◽  
Hua An ◽  
Ning Li ◽  
Jun Du ◽  
Zhengchun Peng

As flexible all-solid-state batteries are highly safe and lightweight, they can be considered as candidates for wearable energy sources. However, their performance needs to be first improved, which can be...


Author(s):  
Diego Holanda Pereira de Souza ◽  
Kasper T. Møller ◽  
Stephen A. Moggach ◽  
Terry D Humphries ◽  
Anita D’Angelo ◽  
...  

Metal boron-hydrogen compounds are considered as promising solid electrolyte candidates for the development of all-solid-state batteries (ASSB), owing to the high ionic conductivity exhibited by closo- and nido-boranes. In this...


2019 ◽  
Vol 12 (9) ◽  
pp. 2665-2671 ◽  
Author(s):  
Xiaona Li ◽  
Jianwen Liang ◽  
Jing Luo ◽  
Mohammad Norouzi Banis ◽  
Changhong Wang ◽  
...  

Ambient-air-stable Li3InCl6 halide solid electrolyte, with high ionic conductivity of 1.49 × 10−3 S cm−1 at 25 °C, delivers essential advantages over commercial sulfide-based solid electrolyte.


2017 ◽  
Vol 5 (25) ◽  
pp. 12934-12942 ◽  
Author(s):  
Ouwei Sheng ◽  
Chengbin Jin ◽  
Jianmin Luo ◽  
Huadong Yuan ◽  
Cong Fang ◽  
...  

The solid-state Li–S batteries using N-CNs/S cathode and composite polymer electrolyte added IL@ZrO2can work at the human body temperature of 37 °C.


Sign in / Sign up

Export Citation Format

Share Document