Co2P nanoparticles encapsulated in 3D porous N-doped carbon nanosheet networks as an anode for high-performance sodium-ion batteries

2018 ◽  
Vol 6 (5) ◽  
pp. 2139-2147 ◽  
Author(s):  
Dan Zhou ◽  
Li-Zhen Fan

A novel Co2P-3D PNC composite with Co2P NPs encapsulated in 3D porous N-doped carbon nanosheet networks was synthesized by a cobalt nitrate-induced PVP-blowing method combined with an in situ phosphidation process. The resultant Co2P-3D PNC anode delivers high specific capacity, enhanced rate capability, and improved cycling stability.

RSC Advances ◽  
2017 ◽  
Vol 7 (18) ◽  
pp. 10885-10890 ◽  
Author(s):  
Yingchang Yang ◽  
Shijia Liao ◽  
Wei Shi ◽  
Yundong Wu ◽  
Renhui Zhang ◽  
...  

Nitrogen-doped TiO2(B) nanorods exhibit high specific capacity, good cycling stability and enhanced rate capability when utilized in sodium-ion batteries.


2017 ◽  
Vol 5 (21) ◽  
pp. 10406-10415 ◽  
Author(s):  
Yew Von Lim ◽  
Ye Wang ◽  
Dezhi Kong ◽  
Lu Guo ◽  
Jen It Wong ◽  
...  

Cubic-shaped WS2 nanopetals/flowers on nitrogen-doped nanoporous carbons, with excellent rate capability and cycling stability of sodium-ion batteries, were developed from Prussian blue nanocubes via solvothermal methods.


2020 ◽  
Vol 8 (21) ◽  
pp. 11011-11018 ◽  
Author(s):  
Chunrong Ma ◽  
Zhixin Xu ◽  
Jiali Jiang ◽  
ZiFeng Ma ◽  
Tristan Olsen ◽  
...  

A MoS2/MoO2 heterointerface is created, with MoO2 nanocrystals anchored on MoS2 nanosheets, assisted by an N-doped carbon protecting layer, on CNTs. The electrode has a high specific capacity of ∼700 mA h g−1 at 0.2 A g−1, excellent cycling stability and rate capability.


Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Yuqian Li ◽  
Liyuan Zhang ◽  
Xiuli Wang ◽  
Xinhui Xia ◽  
Dong Xie ◽  
...  

Amorphous carbon is considered as a prospective and serviceable anode for the storage of sodium. In this contribution, we illuminate the transformation rule of defect/void ratio and the restrictive relation between specific capacity and rate capability. Inspired by this mechanism, ratio of plateau/slope capacity is regulated via temperature-control pyrolysis. Moreover, pore-forming reaction is induced to create defects, open up the isolated voids, and build fast ion channels to further enhance the capacity and rate ability. Numerous fast ion channels, high ion-electron conductivity, and abundant defects lead the designed porous hard carbon/Co3O4 anode to realize a high specific capacity, prolonged circulation ability, and enhanced capacity at high rates. This research deepens the comprehension of sodium storage behavior and proposes a fabrication approach to achieve high performance carbonaceous anodes for sodium-ion batteries.


2021 ◽  
Vol 5 (1) ◽  
pp. 293-303
Author(s):  
Qun Li ◽  
Qingze Jiao ◽  
Wei Zhou ◽  
Xueting Feng ◽  
Quan Shi ◽  
...  

Core–shell CuCo2S4@polypyrrole (CS-CuCo2S4@PPy) nanocomposites, as advanced anode materials for sodium ion batteries with outstanding cycling stability and rate capability, were prepared by a facile solvothermal strategy and subsequent in-situ chemical oxidation polymerization.


2021 ◽  
pp. 2100808
Author(s):  
Bo Yin ◽  
Shuquan Liang ◽  
Dongdong Yu ◽  
Boshi Cheng ◽  
Ishioma L. Egun ◽  
...  

2021 ◽  
pp. 161885
Author(s):  
Limin Zhu ◽  
Chunliang Pan ◽  
Qing Han ◽  
Yongxia Miao ◽  
Xinli Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document