scholarly journals High Capacity and Superior Rate Performances Coexisting in Carbon-Based Sodium-Ion Battery Anode

Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Yuqian Li ◽  
Liyuan Zhang ◽  
Xiuli Wang ◽  
Xinhui Xia ◽  
Dong Xie ◽  
...  

Amorphous carbon is considered as a prospective and serviceable anode for the storage of sodium. In this contribution, we illuminate the transformation rule of defect/void ratio and the restrictive relation between specific capacity and rate capability. Inspired by this mechanism, ratio of plateau/slope capacity is regulated via temperature-control pyrolysis. Moreover, pore-forming reaction is induced to create defects, open up the isolated voids, and build fast ion channels to further enhance the capacity and rate ability. Numerous fast ion channels, high ion-electron conductivity, and abundant defects lead the designed porous hard carbon/Co3O4 anode to realize a high specific capacity, prolonged circulation ability, and enhanced capacity at high rates. This research deepens the comprehension of sodium storage behavior and proposes a fabrication approach to achieve high performance carbonaceous anodes for sodium-ion batteries.

2020 ◽  
Vol 8 (21) ◽  
pp. 11011-11018 ◽  
Author(s):  
Chunrong Ma ◽  
Zhixin Xu ◽  
Jiali Jiang ◽  
ZiFeng Ma ◽  
Tristan Olsen ◽  
...  

A MoS2/MoO2 heterointerface is created, with MoO2 nanocrystals anchored on MoS2 nanosheets, assisted by an N-doped carbon protecting layer, on CNTs. The electrode has a high specific capacity of ∼700 mA h g−1 at 0.2 A g−1, excellent cycling stability and rate capability.


2018 ◽  
Vol 6 (5) ◽  
pp. 2139-2147 ◽  
Author(s):  
Dan Zhou ◽  
Li-Zhen Fan

A novel Co2P-3D PNC composite with Co2P NPs encapsulated in 3D porous N-doped carbon nanosheet networks was synthesized by a cobalt nitrate-induced PVP-blowing method combined with an in situ phosphidation process. The resultant Co2P-3D PNC anode delivers high specific capacity, enhanced rate capability, and improved cycling stability.


RSC Advances ◽  
2017 ◽  
Vol 7 (18) ◽  
pp. 10885-10890 ◽  
Author(s):  
Yingchang Yang ◽  
Shijia Liao ◽  
Wei Shi ◽  
Yundong Wu ◽  
Renhui Zhang ◽  
...  

Nitrogen-doped TiO2(B) nanorods exhibit high specific capacity, good cycling stability and enhanced rate capability when utilized in sodium-ion batteries.


Nanoscale ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 5812-5816 ◽  
Author(s):  
Jinyun Liu ◽  
Xirong Lin ◽  
Tianli Han ◽  
Qianqian Lu ◽  
Jiawei Long ◽  
...  

Metallic germanium (Ge) as the anode can deliver a high specific capacity and high rate capability in lithium ion batteries.


RSC Advances ◽  
2016 ◽  
Vol 6 (109) ◽  
pp. 107768-107775 ◽  
Author(s):  
Yew Von Lim ◽  
Zhi Xiang Huang ◽  
Ye Wang ◽  
Fei Hu Du ◽  
Jun Zhang ◽  
...  

Tungsten disulfide nanoflakes grown on plasma activated three dimensional graphene networks. The work features a simple growth of TMDs-based LIBs anode materials that has excellent rate capability, high specific capacity and long cycling stability.


RSC Advances ◽  
2015 ◽  
Vol 5 (10) ◽  
pp. 7356-7362 ◽  
Author(s):  
Minchan Li ◽  
Wenxi Wang ◽  
Mingyang Yang ◽  
Fucong Lv ◽  
Lujie Cao ◽  
...  

A novel microcuboid-shaped C–Fe3O4 assembly consisting of ultrafine nanoparticles derived from Fe–MOFs exhibits a greatly enhanced performance with high specific capacity, excellent cycling stability and good rate capability as anode materials for lithium ion batteries.


2021 ◽  
Author(s):  
Francielli Genier ◽  
Shreyas Pathreeker ◽  
Robson Schuarca ◽  
Mohammad Islam ◽  
Ian Hosein

Deriving battery grade materials from natural sources is a key element to establishing sustainable energy storage technologies. In this work, we present the use of avocado peels as a sustainable source for conversion into hard carbon based anodes for sodium ion batteries. The avocado peels are simply washed and dried then proceeded to a high temperature conversion step. Materials characterization reveals conversion of the avocado peels in high purity, highly porous hard carbon powders. When prepared as anode materials they show to the capability to reversibly store and release sodium ions. The hard carbon-based electrodes exhibit excellent cycling performance, namely, a reversible capacity of 352.55 mAh/g at 0.05 A/g, rate capability up to 86 mAh/g at 3500 mA/g, capacity retention of >90%, and 99.9% coulombic efficiencies after 500 cycles. This study demonstrates avocado derived hard carbon as a sustainable source that can provide excellent electrochemical and battery performance as anodes in sodium ion batteries.


2020 ◽  
Vol 4 (4) ◽  
pp. 184
Author(s):  
Jiyu Cai ◽  
Zonghai Chen ◽  
Xiangbo Meng

Sodium-ion batteries (SIBs) have attracted increasing attention for storing renewable clean energy, owing to their cost-effectiveness. Nonetheless, SIBs still remain significant challenges in terms of the availability of suitable anode materials with high capacities and good rate capabilities. Our previous work has developed and verified that Cu2S wrapped by nitrogen-doped graphene (i.e., Cu2S@NG composite), as an anode in SIBs, could exhibit a superior performance with ultralong cyclability and excellent rate capability, mainly due to the multifunctional roles of NG. However, the Cu2S@NG anode still suffers from continuous parasitic reactions at low potentials, causing a rapid performance deterioration. In this study, we investigated the effects of a conformal Al2O3 coating via atomic layer deposition (ALD) on the interfacial stability of the Cu2S@NG anode. As a consequence, the ALD-coated Cu2S@NG electrode can deliver a high capacity of 374 mAh g−1 at a current density of 100 mA g−1 and achieve a capacity retention of ~100% at different rates. This work verified that surface modification via ALD is a viable route for improving SIBs’ performances.


NANO ◽  
2020 ◽  
pp. 2150007
Author(s):  
Jinglong Li ◽  
Xia Wang ◽  
Qiang Li ◽  
Hongsen Li ◽  
Jie Xu ◽  
...  

Rationally engineered anode materials with high specific capacities and rate capability are essential for lithium-ion batteries (LIBs). In this paper, a free-standing anode composed of Co3S4 nanosheets arrays and carbon cloth (abbreviated Co3S4@CC) was fabricated for high performance LIBs. The three-dimensional (3D) porous carbon cloth could not only improve the conductivity but also boost Li[Formula: see text] transfer and increase contact area for reactions. Besides, the porous thin Co3S4 nanosheets possessing strong interaction with carbon cloth by formation of C–S bond and high surface area could facilitate the mitigation of volume expansion and reduction of Li[Formula: see text] diffusion distance, coupling with efficient contact with electrolytes during cycling process. As expected, the freestanding Co3S4@CC anode presents pseudocapacitance-dominated storage behavior with a very high specific capacity of 847[Formula: see text]mAh g[Formula: see text] at 250[Formula: see text]mA g[Formula: see text] after 100 cycles and good rate capability for LIBs. This work provides an approach for designing metal sulfides with high capacities and rate capability for LIBs, especially flexible LIBs.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Qiulong Wei ◽  
Qidong Li ◽  
Yalong Jiang ◽  
Yunlong Zhao ◽  
Shuangshuang Tan ◽  
...  

AbstractHigh-performance and low-cost sodium-ion capacitors (SICs) show tremendous potential applications in public transport and grid energy storage. However, conventional SICs are limited by the low specific capacity, poor rate capability, and low initial coulombic efficiency (ICE) of anode materials. Herein, we report layered iron vanadate (Fe5V15O39 (OH)9·9H2O) ultrathin nanosheets with a thickness of ~ 2.2 nm (FeVO UNSs) as a novel anode for rapid and reversible sodium-ion storage. According to in situ synchrotron X-ray diffractions and electrochemical analysis, the storage mechanism of FeVO UNSs anode is Na+ intercalation pseudocapacitance under a safe potential window. The FeVO UNSs anode delivers high ICE (93.86%), high reversible capacity (292 mAh g−1), excellent cycling stability, and remarkable rate capability. Furthermore, a pseudocapacitor–battery hybrid SIC (PBH-SIC) consisting of pseudocapacitor-type FeVO UNSs anode and battery-type Na3(VO)2(PO4)2F cathode is assembled with the elimination of presodiation treatments. The PBH-SIC involves faradaic reaction on both cathode and anode materials, delivering a high energy density of 126 Wh kg−1 at 91 W kg−1, a high power density of 7.6 kW kg−1 with an energy density of 43 Wh kg−1, and 9000 stable cycles. The tunable vanadate materials with high-performance Na+ intercalation pseudocapacitance provide a direction for developing next-generation high-energy capacitors.


Sign in / Sign up

Export Citation Format

Share Document