scholarly journals Artificial photosynthesis by light absorption, charge separation, and multielectron catalysis

2018 ◽  
Vol 54 (50) ◽  
pp. 6554-6572 ◽  
Author(s):  
Miloš Đokić ◽  
Han Sen Soo

We highlight recent novel approaches in the field of artificial photosynthesis. We emphasize the potential of a highly modular plug-and-play concept that we hope will persuade the community to explore a more inclusive variety of multielectron redox catalysis to complement the proton reduction and water oxidation half-reactions in traditional solar water splitting systems.

2021 ◽  
Author(s):  
Qijun Meng ◽  
Biaobiao Zhang ◽  
Hao Yang ◽  
Chang Liu ◽  
Yingzheng Li ◽  
...  

Bismuth vanadate (BiVO4) is one of the most fascinating building blocks for the design and assembly of highly efficient artificial photosynthesis devices for solar water splitting. Our recent report has...


Author(s):  
Xin Zou ◽  
Xueyang Han ◽  
Chengxiong Wang ◽  
Yunkun Zhao ◽  
Chun Du ◽  
...  

Ta3N5 is regarded as a promising candidate material with adequate visible light absorption and band structure for photoelectrochemical water splitting. However, the performance of Ta3N5 is severely limited by the...


Author(s):  
Bingjun Jin ◽  
Yoonjun Cho ◽  
Cheolwoo Park ◽  
Jeehun Jeong ◽  
Sungsoon Kim ◽  
...  

The photoelectrochemical (PEC) water splitting efficiency is profoundly restricted by the limited light harvesting, rapid charge recombination, and sluggish water oxidation kinetics, in which the construction of a photoelectrode requires...


2020 ◽  
Vol 3 (12) ◽  
pp. 11886-11892
Author(s):  
Salim Caliskan ◽  
Jung Kyu Kim ◽  
Gill Sang Han ◽  
Fen Qin ◽  
In Sun Cho ◽  
...  

2018 ◽  
Vol 8 (9) ◽  
pp. 1526 ◽  
Author(s):  
Sangmo Kim ◽  
Nguyen Nguyen ◽  
Chung Bark

Over the past few decades, solar water splitting has evolved into one of the most promising techniques for harvesting hydrogen using solar energy. Despite the high potential of this process for hydrogen production, many research groups have encountered significant challenges in the quest to achieve a high solar-to-hydrogen conversion efficiency. Recently, ferroelectric materials have attracted much attention as promising candidate materials for water splitting. These materials are among the best candidates for achieving water oxidation using solar energy. Moreover, their characteristics are changeable by atom substitute doping or the fabrication of a new complex structure. In this review, we describe solar water splitting technology via the solar-to-hydrogen conversion process. We will examine the challenges associated with this technology whereby ferroelectric materials are exploited to achieve a high solar-to-hydrogen conversion efficiency.


Author(s):  
Abhinav Bhanawat ◽  
Keyong Zhu ◽  
Laurent Pilon

This paper aims to systematically investigate the effect of gas bubbles formation on the performance of a horizontal photoelectrode exposed to normally incident light during photoelectrochemical water splitting. The presence...


2019 ◽  
Author(s):  
Drialys Cardenas-Morcoso ◽  
Tsvetelina Merdzhanova ◽  
Vladimir Smirnov ◽  
Friedhelm Finger ◽  
Bernhard Kaiser ◽  
...  

2019 ◽  
Vol 9 (27) ◽  
pp. 1901287 ◽  
Author(s):  
Zhangliu Tian ◽  
Pengfei Zhang ◽  
Peng Qin ◽  
Du Sun ◽  
Shaoning Zhang ◽  
...  

2019 ◽  
Vol 9 (17) ◽  
pp. 4588-4597 ◽  
Author(s):  
Truong-Giang Vo ◽  
Hsin-Man Liu ◽  
Chia-Ying Chiang

In this work, the effect of photochemically modifying nanoporous bismuth vanadate in Co2+ solution in acetate buffer (abbreviated as Co–Ac) on water oxidation was thoroughly studied.


Sign in / Sign up

Export Citation Format

Share Document