scholarly journals Ferroelectric Materials: A Novel Pathway for Efficient Solar Water Splitting

2018 ◽  
Vol 8 (9) ◽  
pp. 1526 ◽  
Author(s):  
Sangmo Kim ◽  
Nguyen Nguyen ◽  
Chung Bark

Over the past few decades, solar water splitting has evolved into one of the most promising techniques for harvesting hydrogen using solar energy. Despite the high potential of this process for hydrogen production, many research groups have encountered significant challenges in the quest to achieve a high solar-to-hydrogen conversion efficiency. Recently, ferroelectric materials have attracted much attention as promising candidate materials for water splitting. These materials are among the best candidates for achieving water oxidation using solar energy. Moreover, their characteristics are changeable by atom substitute doping or the fabrication of a new complex structure. In this review, we describe solar water splitting technology via the solar-to-hydrogen conversion process. We will examine the challenges associated with this technology whereby ferroelectric materials are exploited to achieve a high solar-to-hydrogen conversion efficiency.

Author(s):  
Xin Zou ◽  
Xueyang Han ◽  
Chengxiong Wang ◽  
Yunkun Zhao ◽  
Chun Du ◽  
...  

Ta3N5 is regarded as a promising candidate material with adequate visible light absorption and band structure for photoelectrochemical water splitting. However, the performance of Ta3N5 is severely limited by the...


Author(s):  
Bingjun Jin ◽  
Yoonjun Cho ◽  
Cheolwoo Park ◽  
Jeehun Jeong ◽  
Sungsoon Kim ◽  
...  

The photoelectrochemical (PEC) water splitting efficiency is profoundly restricted by the limited light harvesting, rapid charge recombination, and sluggish water oxidation kinetics, in which the construction of a photoelectrode requires...


Solar Energy ◽  
2018 ◽  
Vol 173 ◽  
pp. 1323
Author(s):  
Shahid Ali ◽  
Ibrahim Khan ◽  
Safyan A. Khan ◽  
Manzar Sohail ◽  
Zain H. Yamani ◽  
...  

2019 ◽  
Author(s):  
Drialys Cardenas-Morcoso ◽  
Tsvetelina Merdzhanova ◽  
Vladimir Smirnov ◽  
Friedhelm Finger ◽  
Bernhard Kaiser ◽  
...  

2019 ◽  
Vol 9 (17) ◽  
pp. 4588-4597 ◽  
Author(s):  
Truong-Giang Vo ◽  
Hsin-Man Liu ◽  
Chia-Ying Chiang

In this work, the effect of photochemically modifying nanoporous bismuth vanadate in Co2+ solution in acetate buffer (abbreviated as Co–Ac) on water oxidation was thoroughly studied.


RSC Advances ◽  
2020 ◽  
Vol 10 (55) ◽  
pp. 33307-33316
Author(s):  
Aadesh P. Singh ◽  
Camilla Tossi ◽  
Ilkka Tittonen ◽  
Anders Hellman ◽  
Björn Wickman

Solar energy induced water splitting in photoelectrochemical (PEC) cells is one of the most sustainable ways of hydrogen production. In this work, hematite (α-Fe2O3) thin film were modified by In3+ and Ti4+ co-doping for enhanced PEC performance.


2019 ◽  
Vol 374 ◽  
pp. 276-283 ◽  
Author(s):  
Wael Z. Tawfik ◽  
Mostafa Afifi Hassan ◽  
Muhammad Ali Johar ◽  
Sang-Wan Ryu ◽  
June Key Lee

2019 ◽  
Vol 7 (39) ◽  
pp. 22274-22278 ◽  
Author(s):  
Chenchen Feng ◽  
Qi Zhou ◽  
Bin Zheng ◽  
Xiang Cheng ◽  
Yajun Zhang ◽  
...  

Spinel-structured NiCo2O4 nanosheets with dual-metal active sites, an ultrathin structure, and abundant oxygen vacancies were decorated for the first time on a BiVO4 photoanode for highly efficient PEC water oxidation.


2020 ◽  
Vol 8 (7) ◽  
pp. 3845-3850 ◽  
Author(s):  
Meirong Huang ◽  
Wenhai Lei ◽  
Min Wang ◽  
Shuji Zhao ◽  
Changli Li ◽  
...  

Large-scale BiVO4 photoanodes were prepared for solar water splitting. A photocurrent density of water oxidation of ∼2.23 mA cm−2 at 1.23 VRHE and ∼0.83% conversion efficiency at 0.65 VRHE were achieved, with <4% decay after 5 h of operation under harsh conditions.


Sign in / Sign up

Export Citation Format

Share Document