scholarly journals Surface structure, optoelectronic properties and charge transport in ZnO nanocrystal/MDMO-PPV multilayer films

2018 ◽  
Vol 20 (17) ◽  
pp. 12260-12271 ◽  
Author(s):  
Qing Lian ◽  
Mu Chen ◽  
Muhamad Z. Mokhtar ◽  
Shanglin Wu ◽  
Mingning Zhu ◽  
...  

ZnO nanocrystal/MDMO-PPV multilayer films were studied that contained six bilayers and showed excellent light absorption tuneability, photoluminescence quenching and solar cells exhibited a surprisingly high open circuit voltage.

2019 ◽  
Vol 12 (9) ◽  
pp. 2778-2788 ◽  
Author(s):  
Martin Stolterfoht ◽  
Pietro Caprioglio ◽  
Christian M. Wolff ◽  
José A. Márquez ◽  
Joleik Nordmann ◽  
...  

We quantify recombination losses in the bulk and interfaces for different perovskite compositions and popular charge transport layers.


2019 ◽  
Vol 7 (32) ◽  
pp. 18971-18979 ◽  
Author(s):  
Tian Du ◽  
Weidong Xu ◽  
Matyas Daboczi ◽  
Jinhyun Kim ◽  
Shengda Xu ◽  
...  

Reduction in p-doping of the organic hole transport layer (HTL) leads to substantial improvements in PV performance in planar p–i–n perovskite solar cells.


Joule ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 788-798 ◽  
Author(s):  
Sandheep Ravishankar ◽  
Saba Gharibzadeh ◽  
Cristina Roldán-Carmona ◽  
Giulia Grancini ◽  
Yonghui Lee ◽  
...  

2017 ◽  
Vol 1 (8) ◽  
pp. 1600-1606 ◽  
Author(s):  
Akhil Gupta ◽  
Anushri Rananaware ◽  
Pedada Srinivasa Rao ◽  
Duong Duc La ◽  
Ante Bilic ◽  
...  

An H-shaped, non-fullerene small molecular electron acceptor displayed promising optoelectronic properties and afforded an encouraging efficiency of 5.42%.


2003 ◽  
Vol 762 ◽  
Author(s):  
Jianhua Zhu ◽  
Vikram L. Dalal

AbstractWe report on the growth and properties of microcrystalline Si:H and (Si,Ge):H solar cells on stainless steel substrates. The solar cells were grown using a remote, low pressure ECR plasma system. In order to crystallize (Si,Ge), much higher hydrogen dilution (∼40:1) had to be used compared to the case for mc-Si:H, where a dilution of 10:1 was adequate for crystallization. The solar cell structure was of the p+nn+ type, with light entering the p+ layer. It was found that it was advantageous to use a thin a-Si:H buffer layer at the back of the cells in order to reduce shunt density and improve the performance of the cells. A graded gap buffer layer was used at the p+n interface so as to improve the open-circuit voltage and fill factor. The open circuit voltage and fill factor decreased as the Ge content increased. Quantum efficiency measurements indicated that the device was indeed microcrystalline and followed the absorption characteristics of crystalline ( Si,Ge). As the Ge content increased, quantum efficiency in the infrared increased. X-ray measurements of films indicated grain sizes of ∼ 10nm. EDAX measurements were used to measure the Ge content in the films and devices. Capacitance measurements at low frequencies ( ~100 Hz and 1 kHz) indicated that the base layer was indeed behaving as a crystalline material, with classical C(V) curves. The defect density varied between 1x1016 to 2x1017/cm3, with higher defects indicated as the Ge concentration increased.


Author(s):  
Pietro Caprioglio ◽  
Fengshuo Zu ◽  
Christian M. Wolff ◽  
Martin Stolterfhot ◽  
Norbert Koch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document