Preparation of a monolith MnOx–CeO2/La–Al2O3 catalyst and its properties for catalytic oxidation of toluene

2018 ◽  
Vol 42 (20) ◽  
pp. 16875-16885 ◽  
Author(s):  
Xiaoying Zhou ◽  
Xiaoxiao Lai ◽  
Tao Lin ◽  
Jie Feng ◽  
Zhongyan Hou ◽  
...  

The catalyst DP-MnCe prepared by the deposition–precipitation method has the best catalytic activity for toluene oxidation.

2021 ◽  
Vol 195 ◽  
pp. 110876
Author(s):  
Kannapu Hari Prasad Reddy ◽  
Beom-Sik Kim ◽  
Su Shiung Lam ◽  
Sang-Chul Jung ◽  
JiHyeon Song ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 867
Author(s):  
Guangtao Chai ◽  
Weidong Zhang ◽  
Yanglong Guo ◽  
Jose Luis Valverde ◽  
Anne Giroir-Fendler

A series of Co3O4 catalysts with different contents of residual sodium were prepared using a precipitation method with sodium carbonate as a precipitant and tested for the catalytic oxidation of 1000 ppm propane and toluene at a weight hourly space velocity of 40,000 mL g−1 h−1, respectively. Several techniques were used to characterize the physicochemical properties of the catalysts. Results showed that residual sodium could be partially inserted into the Co3O4 spinel lattice, inducing distortions and helping to increase the specific surface area of the Co3O4 catalysts. Meanwhile, it could negatively affect the reducibility and the oxygen mobility of the catalysts. Moreover, residual sodium had a significant influence on the catalytic activity of propane and toluene oxidation over the synthesized Co3O4 catalysts. The catalyst derived from the precursor washed three times presented the best activity for the catalytic oxidation of propane. The origin was traced to its better reducibility and higher oxygen mobility, which were responsible for the formation of active oxygen species. On the other hand, the catalyst obtained from the precursor washed two times exhibited better performance in toluene oxidation, benefitting from its more defective structure and larger specific surface area. Furthermore, the most active catalysts maintained constant performance in cycling and long-term stability tests of propane and toluene oxidation, being potentially applicable for practical applications.


RSC Advances ◽  
2021 ◽  
Vol 11 (21) ◽  
pp. 12532-12542
Author(s):  
HanShuang Liu ◽  
KaiJun Wang ◽  
XiaoYan Cao ◽  
JiaXin Su ◽  
Zhenggui Gu

The La2O3–CuO–MgO catalyst acts on the oxidation of cumene and shows excellent catalytic activity through the coordination of surface and interior.


Fuel ◽  
2022 ◽  
Vol 307 ◽  
pp. 121794
Author(s):  
Jianwu Zou ◽  
Yankun Du ◽  
Rongjia Fang ◽  
Xiaoshuang Duan ◽  
Yangjia Liu ◽  
...  

2007 ◽  
Vol 336-338 ◽  
pp. 1995-1998
Author(s):  
Yong Heng Zhang ◽  
Jian Zhong Xue

The catalysts based on V/K/Ca and V/Ks/Ce systems for diesel soot catalytic oxidation were synthesized onto the porous alumina substrates. Both catalyst systems showed a good catalytic oxidation activity. The V/K/Ca system exhibited the lowest oxidation onset temperature (OOT) of about 359oC with a composition of V/K/Ca =1:1:0.1 where the V and Ca and/or K elements could form a kind of amorphous phase that determined the catalytic activity. The V/Ks/Ce system displayed the lowest OOT of about 350oC with a composition of V/Ks/Ce = 1:2:0.1 where the K2SO4 and K5V2O3(SO4)4 phases could contribute most to the catalytic activity.


Author(s):  
Istadi Istadi ◽  
Udin Mabruro ◽  
Bintang Ayu Kalimantini ◽  
Luqman Buchori ◽  
Didi Dwi Anggoro

<p>This paper was purposed for testing reusability and stability of calcium oxide-based catalyst (K<sub>2</sub>O/CaO-ZnO) over transesterification reaction of soybean oil with methanol to produce biodiesel. The K<sub>2</sub>O/CaO-ZnO catalyst was synthesized by co-precipitation method of calcium and zinc nitrates followed by impregnation of potassium nitrate. The fresh and used catalysts were tested after regeneration. The catalysts were characterized by Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and BET Surface Area in order to compare the catalyst structure between the fresh and used catalysts. The catalyst testing in transesterification proses was carried out at following operating conditions, i.e. catalyst weight of 6 wt.%, oil to methanol mole ratio of 1:15, and temperature of 60 oC. In addition, metal oxide leaching of K<sub>2</sub>O/CaO-ZnO catalyst during reaction was also tested. From the results, the catalysts exhibited high catalytic activity (80% fatty acid methyl ester (FAME) yield after three-cycles of usage) and acceptable reusability after regeneration. The catalyst also showed acceptable stability of catalytic activity, even after three-cycles of usage. Copyright © 2016 BCREC GROUP. All rights reserved</p><p><em>Received: 10<sup>th</sup> November 2015; Revised: 16<sup>th</sup> January 2016; Accepted: 16<sup>th</sup> January 2016</em></p><p><strong>How to Cite</strong>: Istadi, I., Mabruro, U., Kalimantini, B.A.,  Buchori, L., Anggoro, D.D. (2016). Reusability and Stability Tests of Calcium Oxide Based Catalyst (K<sub>2</sub>O/CaO-ZnO) for Transesterification of Soybean Oil to Biodiesel. <em>Bulletin of Chemical Reaction Engineering &amp; Catalysis</em>, 11 (1): 34-39. (doi:10.9767/bcrec.11.1.413.34-39)</p><p><strong>Permalink/DOI</strong>: <a href="http://dx.doi.org/10.9767/bcrec.11.1.413.34-39">http://dx.doi.org/10.9767/bcrec.11.1.413.34-39</a></p><p> </p>


Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 347 ◽  
Author(s):  
Wenjun Liang ◽  
Xiaoyan Du ◽  
Yuxue Zhu ◽  
Sida Ren ◽  
Jian Li

A series of Pd-TiO2/Pd-Ce/TiO2 catalysts were prepared by an equal volume impregnation method. The effects of different Pd loadings on the catalytic activity of chlorobenzene (CB) were investigated, and the results showed that the activity of the 0.2%-0.3% Pd/TiO2 catalyst was optimal. The effect of Ce doping enhanced the catalytic activity of the 0.2% Pd-0.5% Ce/TiO2 catalyst. The characterization of the catalysts using BET, TEM, H2-TPR, and O2-TPD showed that the oxidation capacity was enhanced, and the catalytic oxidation efficiency was improved due to the addition of Ce. Ion chromatography and Gas Chromatography-Mass Spectrometer results showed that small amounts of dichlorobenzene (DCB) and trichlorobenzene (TCB) were formed during the decomposition of CB. The results also indicated that the calcination temperature greatly influenced the catalyst activity and a calcination temperature of 550 °C was the best. The concentration of CB affected its decomposition, but gas hourly space velocity had little effect. H2-TPR indicated strong metal–support interactions and increased dispersion of PdO in the presence of Ce. HRTEM data showed PdO with a characteristic spacing of 0.26 nm in both 0.2% Pd /TiO2 and 0.2% Pd-0.5% Ce/TiO2 catalysts. The average sizes of PdO nanoparticles in the 0.2% Pd/TiO2 and 0.2% Pd-0.5% Ce/TiO2 samples were 5.8 and 4.7 nm, respectively. The PdO particles were also deposited on the support and they were separated from each other in both catalysts.


ACS Catalysis ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 7431-7442 ◽  
Author(s):  
Aolin Lu ◽  
Hanlei Sun ◽  
Nuowei Zhang ◽  
Liming Che ◽  
Shiyao Shan ◽  
...  

2019 ◽  
Vol 43 (2) ◽  
pp. 813-819 ◽  
Author(s):  
Ravi Shankar ◽  
Asmita Sharma ◽  
Bhawana Jangir ◽  
Manchal Chaudhary ◽  
Gabriele Kociok-Köhn

The synthesis of 1,1,3,3-tetraorganodisiloxanes from the hydrolytic oxidation of diorganosilanes, RR1SiH2, using AuNPs as an interfacial catalyst is described. This study provides a manifestation of the photothermal effect in enhancing the catalytic activity at ambient temperature.


Sign in / Sign up

Export Citation Format

Share Document