scholarly journals Solar UV damage to cellular DNA: from mechanisms to biological effects

2018 ◽  
Vol 17 (12) ◽  
pp. 1842-1852 ◽  
Author(s):  
Leon H. F. Mullenders

Solar ultraviolet (UV) radiation generates bulky photodimers at di-pyrimidine sites that pose stress to cells and organisms by hindering DNA replication and transcription.

Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 125 ◽  
Author(s):  
Brian Diffey

In the early 1970s, environmental conservationists were becoming concerned that a reduction in the thickness of the atmospheric ozone layer would lead to increased levels of ultraviolet (UV) radiation at ground level, resulting in higher population exposure to UV and subsequent harm, especially a rise in skin cancer. At the time, no measurements had been reported on the normal levels of solar UV radiation which populations received in their usual environment, so this lack of data, coupled with increasing concerns about the impact to human health, led to the development of simple devices that monitored personal UV exposure. The first and most widely used UV dosimeter was the polymer film, polysulphone, and this review describes its properties and some of the pioneering studies using the dosimeter that led to a quantitative understanding of human exposure to sunlight in a variety of behavioral, occupational, and geographical settings.


2018 ◽  
Vol 17 (12) ◽  
pp. 1918-1931 ◽  
Author(s):  
Sasha Madronich ◽  
Lars Olof Björn ◽  
Richard L. McKenzie

Many microorganisms are alive while suspended in the atmosphere, but are exposed to solar ultraviolet (UV) radiation from all directions. Geographic and seasonal patterns of DNA-damaging UV doses can be estimated from observations as well as modeling.


2005 ◽  
Vol 5 (5) ◽  
pp. 10409-10420 ◽  
Author(s):  
C. Stick ◽  
K. Krüger ◽  
N. H. Schade ◽  
H. Sandmann ◽  
A. Macke

Abstract. In late May this year unusual high levels of solar ultraviolet radiation were observed in Europe. In Northern Germany the measured irradiance of erythemally effective radiation exceeded the climatological mean by more than about 20%. An extreme low ozone event for the season coincided with the high solar elevation angles during late spring leading to the highest value of erythemal UV-radiation ever observed at this location in May. This ''ozone mini-hole'' was caused by an elevation of tropopause height accompanied with a poleward advection of natural low total ozone from the tropics. The resultant increase in UV-radiation is of particular significance for human health. Dynamically induced low ozone episodes that happen around the summer solstice can considerably enhance the solar UV-radiation in the mid latitudes and therefore contribute to the UV-burden of people living in the mid latitudes.


2019 ◽  
Vol 37 (2) ◽  
pp. 129-141 ◽  
Author(s):  
David J. du Preez ◽  
Jelena V. Ajtić ◽  
Hassan Bencherif ◽  
Nelson Bègue ◽  
Jean-Maurice Cadet ◽  
...  

Abstract. The correlation between solar ultraviolet radiation (UV) and atmospheric ozone is well understood. Decreased stratospheric ozone levels which led to increased solar UV radiation levels at the surface have been recorded. These increased levels of solar UV radiation have potential negative impacts on public health. This study was done to determine whether the break-up of the Antarctic ozone hole has an impact on stratospheric columnar ozone (SCO) and resulting ambient solar UV-B radiation levels at Cape Point, South Africa, over 2007–2016. We investigated the correlations between UV index, calculated from ground-based solar UV-B radiation measurements and satellite-retrieved column ozone data. The strongest anti-correlation on clear-sky days was found at solar zenith angle 25∘ with exponential fit R2 values of 0.45 and 0.53 for total ozone column and SCO, respectively. An average radiation amplification factor of 0.59 across all SZAs was calculated for clear-sky days. The MIMOSA-CHIM model showed that the polar vortex had a limited effect on ozone levels. Tropical air masses more frequently affect the study site, and this requires further investigation.


2009 ◽  
Vol 5 (S264) ◽  
pp. 443-445
Author(s):  
Ximena C. Abrevaya ◽  
Eduardo Cortón ◽  
Pablo J. D. Mauas

AbstractDwarf M stars comprise about 75 percent of all stars in the galaxy. For several years planets orbiting M stars have been discarded as suitable places for development of life. This paradigm now has changed and terrestrial-type planets within liquid-water habitable zones (LW-HZ) around M stars are reconsidered as possible hosts for life as we know it. Nevertheless, large amount of UV radiation is emitted during flares by this stars, and it is uncertain how these events could affect biological systems. In particular UV-C λ < 290nm) exhibits the most damaging effects for living organisms. To analyze the hypothesis that UV could set a limit for the development of extraterrestrial life, we studied the effect of UV-C treatment on halophile archaea cultures. Halophile archaea are extremophile organisms, they are exposed to intense solar UV radiation in their natural environment so they are generally regarded as relatively UV tolerant. Halophiles inhabits in hipersaline environments as salt lakes but also have been found in ancient salt deposits as halites and evaporites on Earth. Since evaporites have been detected in Martian meteorites, these organisms are proposed as plausible inhabitants of Mars-like planets. Our preliminary results show that even after UV damage, the surviving cells were able to resume growth with nearly normal kinetics.


1999 ◽  
Vol 70 (2) ◽  
pp. 184-190 ◽  
Author(s):  
Thierry Douki ◽  
Daniel Perdiz ◽  
Pal Grof ◽  
Zéno Kuluncsics ◽  
Ethel Moustacchi ◽  
...  

2018 ◽  
Author(s):  
D. Jean du Preez ◽  
Jelena V. Ajtić ◽  
Hassan Bencherif ◽  
Nelson Bègue ◽  
Caradee Y. Wright

Abstract. The correlation between solar ultraviolet radiation (UV) and atmospheric ozone is well understood. Decreased stratospheric ozone levels which led to increased solar UV radiation levels at the surface have been recorded. These increased levels of solar UV radiation have potential negative impacts on public health. This study was done to determine whether or not the break-up of the Antarctic ozone hole has an impact on stratospheric columnar ozone (SCO) concentrations and resulting ambient solar UV-B radiation levels at Cape Point, South Africa. At Cape Point, the strongest anti-correlation on clear-sky days was found at solar zenith angle 20° with exponential fit R2 values of 0.71 and 0.66 for total ozone column and SCO, respectively. An average radiation amplification factor of 0.92 was found and the largest decrease in ozone levels occurred during September months. The MIMIOSA-CHIM model showed that the polar vortex had a limited effect on ozone levels at 435–440 K for September and 600 K over Cape Point during November. Tropical air-masses more frequently affect the study site, and this requires further investigation.


Sign in / Sign up

Export Citation Format

Share Document