uv damage
Recently Published Documents


TOTAL DOCUMENTS

308
(FIVE YEARS 43)

H-INDEX

41
(FIVE YEARS 4)

2021 ◽  
Vol 11 (1) ◽  
pp. 8
Author(s):  
Mariusz Berdyński ◽  
Piotr Krawczyk ◽  
Krzysztof Safranow ◽  
Beata Borzemska ◽  
Jacek P. Szaflik ◽  
...  

Background: ALDH3A1 protein is important in maintaining corneal physiology and protecting the eye from UV damage. However, none of the genome-wide association studies has indicated that the ALDH3A1 locus is associated with keratoconus. In this study, we examined the potential role of ALDH3A1 variants as risk factors for keratoconus incidence and severity in a large group of Polish keratoconus patients. Methods: In the first stage we analyzed the coding region sequence of the ALDH3A1 in a subgroup of keratoconus. Then, we genotyped three selected ALDH3A1 variants in a larger KC group of patients (n = 261) and healthy controls (n = 317). Results: We found that the rs1042183 minor allele A is a risk factor for keratoconus in the dominant model (OR = 2.06, 95%CI = 1.42–2.98, p = 0.00013). The rs2228100 variant genotypes appear to be associated with an earlier age of KC diagnosis in the Polish population (p = 0.055 for comparison of three genotypes and p = 0.022 for the dominant inheritance model). Conclusions: The rs1042183 variant in ALDH3A1 is associated with keratoconus risk in the Polish population. The differences in the allele frequency between both populations could be partially responsible for the difference in the disease prevalence.


Author(s):  
Bastian Stark ◽  
Gregory M. K. Poon ◽  
John J. Wyrick
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tonghui Bi ◽  
Xiaohong Niu ◽  
Chunping Qin ◽  
Wei Xiao

AbstractIn response to UV irradiation, translesion DNA synthesis (TLS) utilizes specialized DNA polymerases to bypass replication-blocking lesions. In a well-established polymerase switch model, Polη is thought to be a preferred TLS polymerase to insert correct nucleotides across from the thymine dimer, and Rev1 plays a scaffold role through physical interaction with Polη and the Rev7 subunit of Polζ for continual DNA synthesis. Defective Polη causes a variant form of xeroderma pigmentosum (XPV), a disease with predisposition to sunlight-induced skin cancer. Previous studies revealed that expression of Rev1 alone is sufficient to confer enhanced UV damage tolerance in mammalian cells, which depends on its physical interaction with Polζ but is independent of Polη, a conclusion that appears to contradict current literature on the critical roles of Polη in TLS. To test a hypothesis that the Rev1 catalytic activity is required to backup Polη in TLS, we found that the Rev1 polymerase-dead mutation is synergistic with either Polη mutation or the Polη-interaction mutation in response to UV-induced DNA damage. On the other hand, functional complementation of polH cells by Polη relies on its physical interaction with Rev1. Hence, our studies reveal critical interactions between Rev1 and Polη in response to UV damage.


2021 ◽  
Author(s):  
Smitha Sivapragasam ◽  
Bastian Stark ◽  
Amanda V Albrecht ◽  
Kaitlynne A Bohm ◽  
Peng Mao ◽  
...  
Keyword(s):  

2021 ◽  
Vol 141 (5) ◽  
pp. S13
Author(s):  
P. Tripathi ◽  
M. Kim ◽  
H. Sokkam ◽  
J. Rock ◽  
M.D. Howell ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anna Fortuny ◽  
Audrey Chansard ◽  
Pierre Caron ◽  
Odile Chevallier ◽  
Olivier Leroy ◽  
...  

AbstractHeterochromatin is a critical chromatin compartment, whose integrity governs genome stability and cell fate transitions. How heterochromatin features, including higher-order chromatin folding and histone modifications associated with transcriptional silencing, are maintained following a genotoxic stress challenge is unknown. Here, we establish a system for targeting UV damage to pericentric heterochromatin in mammalian cells and for tracking the heterochromatin response to UV in real time. We uncover profound heterochromatin compaction changes during repair, orchestrated by the UV damage sensor DDB2, which stimulates linker histone displacement from chromatin. Despite massive heterochromatin unfolding, heterochromatin-specific histone modifications and transcriptional silencing are maintained. We unveil a central role for the methyltransferase SETDB1 in the maintenance of heterochromatic histone marks after UV. SETDB1 coordinates histone methylation with new histone deposition in damaged heterochromatin, thus protecting cells from genome instability. Our data shed light on fundamental molecular mechanisms safeguarding higher-order chromatin integrity following DNA damage.


2021 ◽  
Author(s):  
Jonas Demeulemeester ◽  
Stefan C Dentro ◽  
Moritz Gerstung ◽  
Peter Van Loo

The infinite sites model of molecular evolution requires that every position in the genome is mutated at most once. It is a cornerstone of tumour phylogenetic analysis, and is often implied when calling, phasing and interpreting variants or studying the mutational landscape as a whole. Here we identify 20,555 biallelic mutations, where the same base is mutated independently on both parental copies, in 722 (26.0%) bulk sequencing samples from the Pan-Cancer Analysis of Whole Genomes study (PCAWG). Biallelic mutations reveal UV damage hotspots at ETS and NFAT binding sites, and hypermutable motifs in POLE-mutant and other cancers. We formulate recommendations for variant calling and provide frameworks to model and detect biallelic mutations. These results highlight the need for accurate models of mutation rates and tumour evolution, as well as their inference from sequencing data.


Photochem ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 26-37
Author(s):  
Victoria C. Frederick ◽  
Thomas A. Ashy ◽  
Barbara Marchetti ◽  
Michael N. R. Ashfold ◽  
Tolga N. V. Karsili

Melanins are skin-centered molecular structures that block harmful UV radiation from the sun and help protect chromosomal DNA from UV damage. Understanding the photodynamics of the chromophores that make up eumelanin is therefore paramount. This manuscript presents a multi-reference computational study of the mechanisms responsible for the experimentally observed photostability of a melanin-relevant model heterodimer comprising a catechol (C)–benzoquinone (Q) pair. The present results validate a recently proposed photoinduced intermolecular transfer of an H atom from an OH moiety of C to a carbonyl-oxygen atom of the Q. Photoexcitation of the ground state C:Q heterodimer (which has a π-stacked “sandwich” structure) results in population of a locally excited ππ* state (on Q), which develops increasing charge-transfer (biradical) character as it evolves to a “hinged” minimum energy geometry and drives proton transfer (i.e., net H atom transfer) from C to Q. The study provides further insights into excited state decay mechanisms that could contribute to the photostability afforded by the bulk polymeric structure of eumelanin.


Sign in / Sign up

Export Citation Format

Share Document