scholarly journals Enhanced biohydrogen production from nutrient-free anaerobic fermentation medium with edible fungal pretreated rice straw

RSC Advances ◽  
2018 ◽  
Vol 8 (41) ◽  
pp. 22924-22930 ◽  
Author(s):  
Tao Sheng ◽  
Lei Zhao ◽  
Lingfang Gao ◽  
Wenzong Liu ◽  
Guofeng Wu ◽  
...  

An edible fungal pretreatment of rice straw was proposed for enhanced hydrogen production while reducing the chemical cost for traditional biological hydrogen production from lignocellulose.

RSC Advances ◽  
2018 ◽  
Vol 8 (45) ◽  
pp. 25866-25866
Author(s):  
Tao Sheng ◽  
Lei Zhao ◽  
Lingfang Gao ◽  
Wenzong Liu ◽  
Guofeng Wu ◽  
...  

Correction for ‘Enhanced biohydrogen production from nutrient-free anaerobic fermentation medium with edible fungal pretreated rice straw’ by Tao Sheng et al., RSC Adv., 2018, 8, 22924–22930.


2011 ◽  
Vol 36 (21) ◽  
pp. 14280-14288 ◽  
Author(s):  
Alex C.C. Chang ◽  
Ying-Hsuan Tu ◽  
Ming-Hsiang Huang ◽  
Chyi-How Lay ◽  
Chiu-Yue Lin

2010 ◽  
Vol 113-116 ◽  
pp. 623-631
Author(s):  
Li Ran Yue ◽  
Yong Feng Li ◽  
Wei Han ◽  
Jing Li Xu ◽  
Hong Chen ◽  
...  

Research on anaerobic fermentation biohydrogen production from molasses wastewater in a continuous stirred-tank reactor (CSTR) was conducted. Emphasis was focused on the rapid start-up of ethanol-type fermentation in biological hydrogen production reactor. It was found that an initial biomass of 17.71 g/L, temperature of 35°C±1°C, hydraulic retention time (HRT) of 6 h, the reactor could start-up the ethanol-type fermentation at the range of 2000-4000 mg/L and at pH from 3.23 to 4.39 in 12 days with COD (chemical oxygen demand), respectively. The content of hydrogen was 45.77% in the fermentation biogas and the COD removal was 8%. As the hydrogen production system experienced low pH (3.23-4.0), the ethanol-produce bacterial can resume easier compared with other fermentation bacteria which are difficult to restore. In addition, when the pH value ranged from 4.0 to 4.63, the hydrogen production increased with the content of ethanol in liquid fermentation products increased. However, it was detected that the yield of hydrogen decreased with a high content of ethanol in the pH value ranged from 3.23 to 4.0, which demonstrated pH value played the most important role on hydrogen production within low pH.


2014 ◽  
Vol 171 ◽  
pp. 145-151 ◽  
Author(s):  
Leilei He ◽  
He Huang ◽  
Zhongfang Lei ◽  
Chunguang Liu ◽  
Zhenya Zhang

Author(s):  
Wenfa Ng

Hydrogen is useful as a fuel and could be produced by a variety of means. One approach uses artificial photosynthesis where energy from sunlight powers the splitting of water into hydrogen and oxygen. But, biological methods for producing hydrogen has emerged strongly over the past decades. In particular, specific microorganisms could use different substrates to produce hydrogen at differing yields. Such fundamental discoveries with industrial applications thus motivated the use of metabolic engineering approaches and methodologies in enhancing biological hydrogen production through a series of enzyme over-expression, pathway debottlenecking, and gene deletion. However, such approaches heavily rely on the selection of an appropriate microbial chassis for biohydrogen production. With the proper strain in hand, use of alternative substrates may engender greater hydrogen productivities. But learning from the bioprocessing field, co-culture of two compatible microorganisms have been sought after for improving biohydrogen production. In addition, thermophilic microbes may also be useful candidates for exploiting hydrogen production from composting. Future outlook in the field looks into filling our gaps in understanding of the metabolic network that feeds into hydrogen production in different organisms. But, more importantly, problems such as reduced growth rate in engineered microbes point to fundamental issues with using genetically engineered microorganisms for improved biohydrogen production, to which clever bioprocess engineering may yield solutions.


Sign in / Sign up

Export Citation Format

Share Document