fungal pretreatment
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 36)

H-INDEX

24
(FIVE YEARS 6)

2021 ◽  
pp. 126526
Author(s):  
Panagiotis Basinas ◽  
Jiří Rusín ◽  
Kateřina Chamrádová ◽  
Kateřina Malachová ◽  
Zuzana Rybková ◽  
...  

Author(s):  
Meng Wang ◽  
Chen Yang ◽  
Jean Marie François ◽  
Xia Wan ◽  
Qianchun Deng ◽  
...  

Rapeseed meal (RSM) is a major by-product of oil extraction from rapeseed, consists mainly of proteins and phenolic compounds. The use of RSM as protein feedstock for microbial fermentation is always hampered by phenolic compounds, which have antioxidant property with health-promoting benefits but inhibit bacterial growth. However, there is still not any good process that simultaneously improve extraction efficiency of phenolic compounds with conversion efficiency of protein residue into microbial production. Here we established a two-step strategy including fungal pretreatment followed by extraction of phenolic compounds. This could not only increase extraction efficiency and antioxidant property of phenolic compounds by about 2-fold, but also improve conversion efficiency of protein residue into iturin A production by Bacillus amyloliquefaciens CX-20 by about 33%. The antioxidant and antibacterial activities of phenolic extracts were influenced by both total phenolic content and profile, while microbial feedstock value of residue was greatly improved because protein content was increased by ∼5% and phenolic content was decreased by ∼60%. Moreover, this two-step process resulted in isolating more proteins from RSM, bringing iturin A production to 1.95 g/L. In conclusion, high-value-added and graded utilization of phenolic extract and protein residue from RSM with zero waste is realized by a two-step strategy, which combines both benefits of fungal pretreatment and phenolic extraction procedures.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7670
Author(s):  
Onu Onu Olughu ◽  
Lope G. Tabil ◽  
Tim Dumonceaux ◽  
Edmund Mupondwa ◽  
Duncan Cree

Fungal pretreatment of switchgrass using Phanerochaete chrysosporium (PC), Trametes versicolor 52J (TV52J), and the Trametes versicolor mutant strain (m4D) under solid-state fermentation was conducted to improve its pellet quality. For all three fungal strains, the fermentation temperature had a significant effect (p < 0.05) on pellet unit density and tensile strength. The p-values of the quadratic models for all the response variables showed highly significant regression models (p < 0.01) except for dimensional stability. In addition, 3.1-fold and 2.8-fold increase in pellet tensile strength were obtained from P. chrysosporium- and T. versicolor 52J-treated materials, respectively. Microstructural examination showed that fungal pretreatment reduced pores in the pellets and enhanced pellet particle bonding. Among the fungal strains, PC had the shortest optimum fermentation time (21 d) and most positive impact on the pellet tensile strength and hydrophobicity. Therefore, switchgrass pretreatment using PC has the potential for resolving the challenges of switchgrass pellet transportation and storage and reducing the overall pelletization cost. However, a detailed comparative technoeconomic analysis would be required to make definitive cost comparisons.


Author(s):  
Caroline Hartmann ◽  
Roselei Claudete Fontana ◽  
Félix Gonçalves de Siqueira ◽  
Marli Camassola

2021 ◽  
Vol 332 ◽  
pp. 125146
Author(s):  
Ninlawan Chaitanoo ◽  
Pruk Aggarangsi ◽  
Saoharit Nitayavardhana

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jiangshan Ma ◽  
Huimin Yue ◽  
Hongqian Li ◽  
Jing Zhang ◽  
Yanghong Zhang ◽  
...  

Abstract Background Pretreatment is a critical step required for efficient conversion of woody biomass into biofuels and platform chemicals. Fungal pretreatment is regarded as one of the most promising technology for woody biomass conversion but remains challenging for industrial application. The exploration of potential fungus strain with high efficient delignification and less processing time for woody biomass pretreatment will be valuable for development of biorefinery industry. Here, a newly isolated white-rot basidiomycete Peniophora incarnate T-7 was employed for poplar wood pretreatment. Results The chemical component analysis showed that cellulose, hemicellulose and lignin from poplar wood declined by 16%, 48% and 70%, respectively, after 7 days submerged fermentation by P. incarnate T-7. Enzymatic saccharification analysis revealed that the maximum yields of glucose and xylose from 7 days of P. incarnate T-7 treated poplar wood reached 33.4% and 27.6%, respectively, both of which were enhanced by sevenfold relative to the untreated group. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD) and pyrolysis gas chromatography–mass spectrometry (Py-GC/MS) characterization confirmed that lignocellulosic structure of poplar wood was largely broken by P. incarnate T-7, including delignification and de-crystalline of cellulose. Meanwhile, lignin component of poplar wood was selectively degraded by P. incarnate T-7, and G-type unit of lignin was preferentially attacked by the strain. Furthermore, quantitative proteomic analysis revealed that a considerable amount of lignocellulolytic enzymes were detected in the secretory proteins of P. incarnate T-7, especially with high abundance of lignin-degrading enzymes and hemicellulases. Combination of quantitative proteomic with transcriptomic analysis results showed that most of those lignocellulolytic enzymes were highly upregulated on poplar wood substrate compared to glucose substrate. Conclusions This study showed that P. incarnate T-7 could selectively delignify poplar wood by submerged fermentation with short time of 7 days, which greatly improved its enzymatic saccharification efficiency. Our results suggested that P. incarnate T-7 might be a promising candidate for industrial woody biomass pretreatment.


2021 ◽  
Author(s):  
Caroline Hartmann ◽  
Roselei Claudete Fontana ◽  
Félix Gonçalves de Siqueira ◽  
Marli Camassola

Abstract Biological pretreatment was investigated to increase ethanol production from lignocellulosic biomass, like sugarcane bagasse. Enzyme secretion, changes in substrate composition, enzymatic hydrolysis and ethanol yield after pretreatment by different basidiomycetes were evaluated. Analysis by Fourier transform infrared spectroscopy showed that P. pulmonarius PS2001 and T. villosa 82I6 promoted more extensive selective modifications in the lignin content. Glucose release during enzymatic hydrolysis of samples pretreated with P. pulmonarius PS2001 for 35, 42 and 49 days and with T. villosa 82I6 for 21, 28 and 49 days were higher than the control (48.5±2.38 mg/g), i.e. 68.4 ±0.7, 76.3 ±1.6 and 76.5±2.1 mg/g and 70.9±8.3, 77.8±5.8 and 77.6±4.2 mg/g, respectively. During the fermentation of hydrolysates of samples pretreated with T. villosa 82I6 for 28 and 49 days, a maximum ethanol yield of 19.1±2.8 and 20.2±0.5 mg/g, respectively, was achieved. A positive effect of biological pretreatment on hydrolysis and fermentation was demonstrated.


2021 ◽  
Vol 215 ◽  
pp. 106749
Author(s):  
Jialong Zhang ◽  
Lei Wang ◽  
Haoxiang Ni ◽  
Qipeng Shi ◽  
Xiaoyu Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document