Rapid Start-Up of Ethanol-Type Fermentation in Biological Hydrogen Production Reactor from Molasses Wastewater

2010 ◽  
Vol 113-116 ◽  
pp. 623-631
Author(s):  
Li Ran Yue ◽  
Yong Feng Li ◽  
Wei Han ◽  
Jing Li Xu ◽  
Hong Chen ◽  
...  

Research on anaerobic fermentation biohydrogen production from molasses wastewater in a continuous stirred-tank reactor (CSTR) was conducted. Emphasis was focused on the rapid start-up of ethanol-type fermentation in biological hydrogen production reactor. It was found that an initial biomass of 17.71 g/L, temperature of 35°C±1°C, hydraulic retention time (HRT) of 6 h, the reactor could start-up the ethanol-type fermentation at the range of 2000-4000 mg/L and at pH from 3.23 to 4.39 in 12 days with COD (chemical oxygen demand), respectively. The content of hydrogen was 45.77% in the fermentation biogas and the COD removal was 8%. As the hydrogen production system experienced low pH (3.23-4.0), the ethanol-produce bacterial can resume easier compared with other fermentation bacteria which are difficult to restore. In addition, when the pH value ranged from 4.0 to 4.63, the hydrogen production increased with the content of ethanol in liquid fermentation products increased. However, it was detected that the yield of hydrogen decreased with a high content of ethanol in the pH value ranged from 3.23 to 4.0, which demonstrated pH value played the most important role on hydrogen production within low pH.

2011 ◽  
Vol 183-185 ◽  
pp. 552-556
Author(s):  
Zhi Qin ◽  
Dan Qin ◽  
Dan Li

Bio-hydrogen production from diluted molasses by anaerobic activated sludge was investigated in a continuous stirred-tank reactor (CSTR) under condition of continuous flow in this study. Research shows that the reactor started up under the condition of influent COD concentration 3000mg/L, HRT8h, pH6.5~7.5 and (35±1) °C. The process performed steadily and a dominant butyric acid and acetic acid type fermentation population was established, acetic acid and butyric acid accounted for about 80% in the liquid fermentation products. The effluent PH value was maintained about 5.0. The biogas yield could reach at 4.87L/d while hydrogen yield reached 41.25mL/d under the condition. When influent COD concentration rose to 5500 mg/L, the biogas yield and hydrogen yield as high as 9.45L/d and 119.98mL/d were obtained.


2019 ◽  
Vol 79 (2) ◽  
pp. 270-277 ◽  
Author(s):  
Qiaoyan Li ◽  
Yongfeng Li

Abstract A continuous hydrogen and methane production system in a two-stage process has been investigated to increase energy recovery rate from molasses wastewater in this study. This system consisted of a continuous stirred-tank reactor for hydrogen production and an internal circulation (IC) reactor for methane production, and was studied under the influent organic loading rate (OLR) of 18, 24, 30 and 36kg COD/(m3·d) (COD: chemical oxygen demand). The maximum volumetric hydrogen production rate of 2.41 L/(L·d) was obtained at the OLR of 30kg COD/(m3·d) with a hydrogen content of 42%, and the maximum volumetric methane production rate of 2.4 L/(L·d) with a methane content of 74.45% was obtained at the OLR of 36kg COD/(m3·d) using the effluents of hydrogen fermentation as substrate. The maximum of 71.06% of the molasses wastewater energy was converted to biogas (hydrogen and methane) at the OLR of 30kg COD/(m3·d).


2013 ◽  
Vol 14 (2) ◽  
pp. 149-156 ◽  

This work focused on glycerol exploitation for biogas and hydrogen production. Anaerobic digestion of pure glycerol was studied in a continuous stirred tank reactor (CSTR), operated under mesophilic conditions (35oC) at various organic loading rates. The overall operation of the reactor showed that it could not withstand organic loading rates above 0.25 g COD L-1 d-1, where the maximum biogas (0.42 ± 0.05 L (g COD)-1) and methane (0.30 ± 0.04 L (g COD)-1) production were achieved. Fermentative hydrogen production was carried out in batch reactors under mesophilic conditions (35oC), using heat-pretreated anaerobic microbial culture as inoculum. The effects of initial concentration of glycerol and initial pH value on hydrogen production were studied. The highest yield obtained was 22.14 ± 0.46 mL H2 (g COD added)-1 for an initial pH of 6.5 and an initial glycerol concentration of 8.3 g COD L-1. The main metabolic product was 1.3 propanediol (PDO), while butyric and acetic acids as well as ethanol, at lower concentrations, were also determined.


2010 ◽  
Vol 113-116 ◽  
pp. 1476-1480
Author(s):  
Xiao Ye Liu ◽  
Yi Sun ◽  
Jian Yu Yang ◽  
Yong Feng Li

This papre discussed the ability of H2-production and wastewater treatment, a continuous stirred tank reactor (CSTR)using a synthesized substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. The results show that when the pH value was 4.0~4.5, OLR was 24.5kg/(m3•d), oxidation-reduction potential was -350~-450mv, temperature was 34.0°C~36.0°C, hydraulic retention time was 6h~8h, the maximum yield of biogas production reached 20L/d and the maximum content of hydrogen is 70%. Detection of the end liquid product, ethanol and acetic acid are main, they are 70% ~90% of the total liquid product, so that is called ethanol-type fermentation.


2012 ◽  
Vol 610-613 ◽  
pp. 347-351
Author(s):  
Guo Chen Zheng ◽  
Zhu Jun Tian ◽  
Jian Zheng Li ◽  
Li Wei ◽  
Ajay Kumar Jha ◽  
...  

A anaerobic baffled reactor (ABR) with an effective volume of 28.7 L was adopted, and the hydrogen production efficiency was investigated with diluted molasses as the substrate. Using a mixture of aerobic and anaerobic activated sludge, the ABR was start-up with a hydraulic retention time (HRT) of 24 h and 35°C. When the influent chemical oxygen demand (COD) concentration was gradually increased from 500 mg/L to 6000 mg/L after a 63-day operation, the ABR kept a steady state. The increase of influent COD concentration, from 6000 mg/L to 8000 mg/L stage by stage, had the remarkable changes on the fermentative system. The ethanol-type fermentation was formed in the first three compartments, while butyric acid-type fermentation in the 4th compartment. In the steady stage at the influent COD of 8000 mg/L, the biogas (H2) yield was found 61.54 L/d (12.85 L/d) while specific H2 production rate of the activated sludge was 48 L/kgMLVSS∙d. Although the ABR system accumulated hydrogen-producing acetogen, due to the hydrogen-consuming bacteria (methanogen and homoacetogenic bacteria), the hydrogen production efficiency was badly inhibited.


RSC Advances ◽  
2018 ◽  
Vol 8 (41) ◽  
pp. 22924-22930 ◽  
Author(s):  
Tao Sheng ◽  
Lei Zhao ◽  
Lingfang Gao ◽  
Wenzong Liu ◽  
Guofeng Wu ◽  
...  

An edible fungal pretreatment of rice straw was proposed for enhanced hydrogen production while reducing the chemical cost for traditional biological hydrogen production from lignocellulose.


Sign in / Sign up

Export Citation Format

Share Document