scholarly journals A reaction–diffusion kinetic model for the heterogeneous N-deacetylation step in chitin material conversion to chitosan in catalytic alkaline solutions

2018 ◽  
Vol 3 (6) ◽  
pp. 920-929 ◽  
Author(s):  
Bojana Bradić ◽  
David Bajec ◽  
Andrej Pohar ◽  
Uroš Novak ◽  
Blaž Likozar

New mechanistic insight into the modelling of the heterogeneous N-deacetylation step of α-chitin, obtained from waste crustacean shells.

2020 ◽  
Author(s):  
Ben A Johnson ◽  
Sascha Ott

<div> <p>Metal-organic frameworks (MOFs) are becoming increasingly popular as heterogenous support matrices for molecular catalysts. Given that reactants, or potentially holes/electrons, need to diffuse into the porous framework as the reaction proceeds, the reaction can possibly take place within the bulk of the particle or be confined to a thin layer at the surface due to transport limitations. Herein, a simple steady-state reaction-diffusion kinetic model is developed to diagnose these two mutually exclusive behaviors in MOF-based systems. The oxygen evolution reaction (OER) driven by a chemical oxidant is presented as an example mechanism. Quantitative metrics for assigning either bulk or surface reactivity are delineated over a wide variety of conditions, and numerical simulations are employed to verify these results. For each case, expressions for the turnover frequency (TOF) are outlined, and it is shown that surface reactivity can influence measured TOFs. Importantly, this report shows how to transition from surface to bulk reactivity and thus identifies which experimental parameters to target for optimizing the efficiency of MOF-based molecular catalyst systems.</p> </div> <br>


2020 ◽  
Author(s):  
Ben A Johnson ◽  
Sascha Ott

<div> <p>Metal-organic frameworks (MOFs) are becoming increasingly popular as heterogenous support matrices for molecular catalysts. Given that reactants, or potentially holes/electrons, need to diffuse into the porous framework as the reaction proceeds, the reaction can possibly take place within the bulk of the particle or be confined to a thin layer at the surface due to transport limitations. Herein, a simple steady-state reaction-diffusion kinetic model is developed to diagnose these two mutually exclusive behaviors in MOF-based systems. The oxygen evolution reaction (OER) driven by a chemical oxidant is presented as an example mechanism. Quantitative metrics for assigning either bulk or surface reactivity are delineated over a wide variety of conditions, and numerical simulations are employed to verify these results. For each case, expressions for the turnover frequency (TOF) are outlined, and it is shown that surface reactivity can influence measured TOFs. Importantly, this report shows how to transition from surface to bulk reactivity and thus identifies which experimental parameters to target for optimizing the efficiency of MOF-based molecular catalyst systems.</p> </div> <br>


RSC Advances ◽  
2021 ◽  
Vol 11 (34) ◽  
pp. 20961-20969
Author(s):  
Yunqing He ◽  
Wanli Nie ◽  
Ying Xue ◽  
Qishan Hu

Hydrosilylation or amination products? It depends on water amount and nucleophiles like excess water or produced/added amines.


2021 ◽  
Vol 154 (12) ◽  
pp. 124313
Author(s):  
L. M. Hunnisett ◽  
P. F. Kelly ◽  
S. Bleay ◽  
F. Plasser ◽  
R. King ◽  
...  

Author(s):  
Su-Huan Kow ◽  
Muhammad Ridwan Fahmi ◽  
Che Zulzikrami Azner Abidin ◽  
Soon-an Ong

Sign in / Sign up

Export Citation Format

Share Document