scholarly journals Precursors of fluidisation in the creep response of a soft glass

Soft Matter ◽  
2019 ◽  
Vol 15 (3) ◽  
pp. 415-423 ◽  
Author(s):  
Raffaela Cabriolu ◽  
Jürgen Horbach ◽  
Pinaki Chaudhuri ◽  
Kirsten Martens

Viaextensive numerical simulations, we study the fluidisation process of dense amorphous materials subjected to an external shear stress, using a three-dimensional colloidal glass model.

2015 ◽  
Vol 25 (3) ◽  
pp. 1-5 ◽  
Author(s):  
Philipp A. C. Kruger ◽  
Victor M. R. Zermeno ◽  
Makoto Takayasu ◽  
Francesco Grilli

2004 ◽  
Vol 127 (3) ◽  
pp. 400-415 ◽  
Author(s):  
Amador M. Guzmán ◽  
Rodrigo A. Escobar ◽  
Cristina H. Amon

Computational investigations of flow mixing and oxygen transfer characteristics in an intravenous membrane oxygenator (IMO) are performed by direct numerical simulations of the conservation of mass, momentum, and species equations. Three-dimensional computational models are developed to investigate flow-mixing and oxygen-transfer characteristics for stationary and pulsating balloons, using the spectral element method. For a stationary balloon, the effect of the fiber placement within the fiber bundle and the number of fiber rings is investigated. In a pulsating balloon, the flow mixing characteristics are determined and the oxygen transfer rate is evaluated. For a stationary balloon, numerical simulations show two well-defined flow patterns that depend on the region of the IMO device. Successive increases of the Reynolds number raise the longitudinal velocity without creating secondary flow. This characteristic is not affected by staggered or non-staggered fiber placement within the fiber bundle. For a pulsating balloon, the flow mixing is enhanced by generating a three-dimensional time-dependent flow characterized by oscillatory radial, pulsatile longitudinal, and both oscillatory and random tangential velocities. This three-dimensional flow increases the flow mixing due to an active time-dependent secondary flow, particularly around the fibers. Analytical models show the fiber bundle placement effect on the pressure gradient and flow pattern. The oxygen transport from the fiber surface to the mean flow is due to a dominant radial diffusion mechanism, for the stationary balloon. The oxygen transfer rate reaches an asymptotic behavior at relatively low Reynolds numbers. For a pulsating balloon, the time-dependent oxygen-concentration field resembles the oscillatory and wavy nature of the time-dependent flow. Sherwood number evaluations demonstrate that balloon pulsations enhance the oxygen transfer rate, even for smaller flow rates.


Circulation ◽  
2014 ◽  
Vol 129 (6) ◽  
pp. 673-682 ◽  
Author(s):  
Riti Mahadevia ◽  
Alex J. Barker ◽  
Susanne Schnell ◽  
Pegah Entezari ◽  
Preeti Kansal ◽  
...  

1981 ◽  
Vol 110 ◽  
pp. 171-194 ◽  
Author(s):  
C. Chandrsuda ◽  
P. Bradshaw

Hot-wire measurements of second- and third-order mean products of velocity fluctuations have been made in the flow behind a backward-facing step with a thin, laminar boundary layer at the top of the step. Measurements extend to a distance of about 12 step heights downstream of the step, and include parts of the recirculating-flow region: approximate limits of validity of hot-wire results are given. The Reynolds number based on step height is about 105, the mixing layer being fully turbulent (fully three-dimensional eddies) well before reattachment, and fairly close to self-preservation in contrast to the results of some previous workers. Rapid changes in turbulence quantities occur in the reattachment region: Reynolds shear stress and triple products decrease spectacularly, mainly because of the confinement of the large eddies by the solid surface. The terms in the turbulent energy and shear stress balances also change rapidly but are still far from the self-preserving boundary-layer state even at the end of the measurement region.


Sign in / Sign up

Export Citation Format

Share Document