Interface engineering using a perovskite derivative phase for efficient and stable CsPbBr3 solar cells

2018 ◽  
Vol 6 (29) ◽  
pp. 14255-14261 ◽  
Author(s):  
Huan Li ◽  
Guoqing Tong ◽  
Taotao Chen ◽  
Hanwen Zhu ◽  
Guopeng Li ◽  
...  

A derivative-phase CsPb2Br5 is introduced into inorganic perovskite solar cells, which will effectively eliminate interface defects, lower the energy barrier of electron transport layer and suppress the recombination at the interface of hole transport layer in the devices.

2021 ◽  
Vol 2083 (2) ◽  
pp. 022011
Author(s):  
Rui Huang ◽  
Jiyu Tang

Abstract Perovskite solar cells have attracted the attention of the researchers in the last couple of years as a potential photovoltaic device. However, the use of expensive hole transport materials (HTM) in these devices often restricts their commercial adaptability. Thus exploring cost-effective, efficient HTL and ETL materials remain an important challenge to the researchers. In this work, simulation studies are carried out considering cupric oxide (CuO), a relatively inexpensive material as hole transport materials for planar heterojunction perovskite solar cells. The photo-voltaic performance of CuO based hole transport layer (HTL) has been estimated in combination with several electron transport materials (ETM) that include TiO2,SnO2,ZnO, CdS, ZnSe,PCBM and Cd1-xZnxS. Studies predict that among these materials, the Cd1-xZnxS electron transport layer (ETL) could be the most promising to result high photo-voltaic efficiency in combination to CuO based HTL. Also, the thickness and optical band gap of perovskite absorber are optimized in order to achieve maximum photo-voltaic efficiency. The cell efficiency of FTO / Cd1-xZnxS/CH3NH3PbI3/CuO/carbon structure is predicted 25.24% under optimized operational conditions with Voc, Jsc and Fill Factor of 1.1eV,26.32mA/cm2 and 87.14% respectively.


Science ◽  
2021 ◽  
Vol 371 (6527) ◽  
pp. 390-395
Author(s):  
Jun Peng ◽  
Daniel Walter ◽  
Yuhao Ren ◽  
Mike Tebyetekerwa ◽  
Yiliang Wu ◽  
...  

Polymer passivation layers can improve the open-circuit voltage of perovskite solar cells when inserted at the perovskite–charge transport layer interfaces. Unfortunately, many such layers are poor conductors, leading to a trade-off between passivation quality (voltage) and series resistance (fill factor, FF). Here, we introduce a nanopatterned electron transport layer that overcomes this trade-off by modifying the spatial distribution of the passivation layer to form nanoscale localized charge transport pathways through an otherwise passivated interface, thereby providing both effective passivation and excellent charge extraction. By combining the nanopatterned electron transport layer with a dopant-free hole transport layer, we achieved a certified power conversion efficiency of 21.6% for a 1-square-centimeter cell with FF of 0.839, and demonstrate an encapsulated cell that retains ~91.7% of its initial efficiency after 1000 hours of damp heat exposure.


2016 ◽  
Vol 30 (27) ◽  
pp. 1650341 ◽  
Author(s):  
Quanrong Deng ◽  
Yiqi Li ◽  
Lian Chen ◽  
Shenggao Wang ◽  
Geming Wang ◽  
...  

The effects of electron and hole transport layer with the electrode work function on perovskite solar cells with the interface defects were simulated by using analysis of microelectronic and photonic structures-one-dimensional (AMPS-1D) software. The simulation results suggest that TiO2 electron transport layer provides best device performance with conversion efficiency of 25.9% compared with ZnO and CdS. The threshold value of back electrode work function for Spiro-OMeTAD, NiO, CuI and Cu2O hole transport layer are calculated to be 4.9, 4.8, 4.7 and 4.9 eV, respectively, to reach the highest conversion efficiency. The mechanisms of device physics with various electron and hole transport materials are discussed in details. The device performance deteriorates gradually as the increased density of interface defects located at ETM/absorber or absorber/HTM. This research results can provide helpful guidance for materials and metal electrode choice for perovskite solar cells.


2021 ◽  
Vol 21 (7) ◽  
pp. 3806-3812
Author(s):  
Truyen Hai Dang ◽  
Sangmo Kim ◽  
Maro Kim ◽  
Chung Wung Bark

Perovskite solar cells have been attracting extensive attention because of their superior photovoltaic performances and lower costs as compared to those of prevailing photovoltaic technologies. There are four main interfaces in perovskite solar cells: flourine-doped tin oxide/electron transport layer, electron transport layer/perovskite layer, perovskite layer/hole transport layer, and hole transport layer/metal electrode. Among them, the interface between the perovskite layer (general formula RPbX3) and electron transport layer significantly affects the power conversion efficiency. In this study, a layer of TiO2, which is the most popular metal oxides used for perovskite solar cells applications, was deposited as the electron transport layer. To enhance the perovskite solar cells performance, surface treatment was performed with TiCl4 (80 mM). To investigate the effect of TiCl4 treatment, ultraviolet-visible spectroscopy was performed on the perovskite film. Atomic force microscopy, X-ray diffraction, scanning electron microscopy and performance of perovskite solar cells have been also evaluated in this paper. The results indicated that the TiCl4 treatment significantly improved the perovskite solar cells performance.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 404
Author(s):  
Abdul Sami ◽  
Arsalan Ansari ◽  
Muhammad Dawood Idrees ◽  
Muhammad Musharraf Alam ◽  
Junaid Imtiaz

Perovskite inorganic-organic solar cells are fabricated as a sandwich structure of mesostructured TiO2 as electron transport layer (ETL), CH3NH3PbI3 as active material layer (AML), and Spiro-OMeTAD as hole transport layer (HTL). The crystallinity, structural morphology, and thickness of TiO2 layer play a crucial role to improve the overall device performance. The randomly distributed one dimensional (1D) TiO2 nanowires (TNWs) provide excellent light trapping with open voids for active filling of visible light absorber compared to bulk TiO2. Solid-state photovoltaic devices based on randomly distributed TNWs and CH3NH3PbI3 are fabricated with high open circuit voltage Voc of 0.91 V, with conversion efficiency (CE) of 7.4%. Mott-Schottky analysis leads to very high built-in potential (Vbi) ranging from 0.89 to 0.96 V which indicate that there is no depletion layer voltage modulation in the perovskite solar cells fabricated with TNWs of different lengths. Moreover, finite-difference time-domain (FDTD) analysis revealed larger fraction of photo-generated charges due to light trapping and distribution due to field convergence via guided modes, and improved light trapping capability at the interface of TNWs/CH3NH3PbI3 compared to bulk TiO2.


2017 ◽  
Vol 5 (10) ◽  
pp. 1844-1851 ◽  
Author(s):  
Feiyue Huang ◽  
Yuelin Wei ◽  
Lin Gu ◽  
Qiyao Guo ◽  
Hui Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document