scholarly journals Simulation studies on the electron transport layer based perovskite solar cell to achieve high photovoltaic efficiency

2021 ◽  
Vol 2083 (2) ◽  
pp. 022011
Author(s):  
Rui Huang ◽  
Jiyu Tang

Abstract Perovskite solar cells have attracted the attention of the researchers in the last couple of years as a potential photovoltaic device. However, the use of expensive hole transport materials (HTM) in these devices often restricts their commercial adaptability. Thus exploring cost-effective, efficient HTL and ETL materials remain an important challenge to the researchers. In this work, simulation studies are carried out considering cupric oxide (CuO), a relatively inexpensive material as hole transport materials for planar heterojunction perovskite solar cells. The photo-voltaic performance of CuO based hole transport layer (HTL) has been estimated in combination with several electron transport materials (ETM) that include TiO2,SnO2,ZnO, CdS, ZnSe,PCBM and Cd1-xZnxS. Studies predict that among these materials, the Cd1-xZnxS electron transport layer (ETL) could be the most promising to result high photo-voltaic efficiency in combination to CuO based HTL. Also, the thickness and optical band gap of perovskite absorber are optimized in order to achieve maximum photo-voltaic efficiency. The cell efficiency of FTO / Cd1-xZnxS/CH3NH3PbI3/CuO/carbon structure is predicted 25.24% under optimized operational conditions with Voc, Jsc and Fill Factor of 1.1eV,26.32mA/cm2 and 87.14% respectively.

2018 ◽  
Vol 6 (29) ◽  
pp. 14255-14261 ◽  
Author(s):  
Huan Li ◽  
Guoqing Tong ◽  
Taotao Chen ◽  
Hanwen Zhu ◽  
Guopeng Li ◽  
...  

A derivative-phase CsPb2Br5 is introduced into inorganic perovskite solar cells, which will effectively eliminate interface defects, lower the energy barrier of electron transport layer and suppress the recombination at the interface of hole transport layer in the devices.


Science ◽  
2021 ◽  
Vol 371 (6527) ◽  
pp. 390-395
Author(s):  
Jun Peng ◽  
Daniel Walter ◽  
Yuhao Ren ◽  
Mike Tebyetekerwa ◽  
Yiliang Wu ◽  
...  

Polymer passivation layers can improve the open-circuit voltage of perovskite solar cells when inserted at the perovskite–charge transport layer interfaces. Unfortunately, many such layers are poor conductors, leading to a trade-off between passivation quality (voltage) and series resistance (fill factor, FF). Here, we introduce a nanopatterned electron transport layer that overcomes this trade-off by modifying the spatial distribution of the passivation layer to form nanoscale localized charge transport pathways through an otherwise passivated interface, thereby providing both effective passivation and excellent charge extraction. By combining the nanopatterned electron transport layer with a dopant-free hole transport layer, we achieved a certified power conversion efficiency of 21.6% for a 1-square-centimeter cell with FF of 0.839, and demonstrate an encapsulated cell that retains ~91.7% of its initial efficiency after 1000 hours of damp heat exposure.


2021 ◽  
Vol 21 (7) ◽  
pp. 3806-3812
Author(s):  
Truyen Hai Dang ◽  
Sangmo Kim ◽  
Maro Kim ◽  
Chung Wung Bark

Perovskite solar cells have been attracting extensive attention because of their superior photovoltaic performances and lower costs as compared to those of prevailing photovoltaic technologies. There are four main interfaces in perovskite solar cells: flourine-doped tin oxide/electron transport layer, electron transport layer/perovskite layer, perovskite layer/hole transport layer, and hole transport layer/metal electrode. Among them, the interface between the perovskite layer (general formula RPbX3) and electron transport layer significantly affects the power conversion efficiency. In this study, a layer of TiO2, which is the most popular metal oxides used for perovskite solar cells applications, was deposited as the electron transport layer. To enhance the perovskite solar cells performance, surface treatment was performed with TiCl4 (80 mM). To investigate the effect of TiCl4 treatment, ultraviolet-visible spectroscopy was performed on the perovskite film. Atomic force microscopy, X-ray diffraction, scanning electron microscopy and performance of perovskite solar cells have been also evaluated in this paper. The results indicated that the TiCl4 treatment significantly improved the perovskite solar cells performance.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 404
Author(s):  
Abdul Sami ◽  
Arsalan Ansari ◽  
Muhammad Dawood Idrees ◽  
Muhammad Musharraf Alam ◽  
Junaid Imtiaz

Perovskite inorganic-organic solar cells are fabricated as a sandwich structure of mesostructured TiO2 as electron transport layer (ETL), CH3NH3PbI3 as active material layer (AML), and Spiro-OMeTAD as hole transport layer (HTL). The crystallinity, structural morphology, and thickness of TiO2 layer play a crucial role to improve the overall device performance. The randomly distributed one dimensional (1D) TiO2 nanowires (TNWs) provide excellent light trapping with open voids for active filling of visible light absorber compared to bulk TiO2. Solid-state photovoltaic devices based on randomly distributed TNWs and CH3NH3PbI3 are fabricated with high open circuit voltage Voc of 0.91 V, with conversion efficiency (CE) of 7.4%. Mott-Schottky analysis leads to very high built-in potential (Vbi) ranging from 0.89 to 0.96 V which indicate that there is no depletion layer voltage modulation in the perovskite solar cells fabricated with TNWs of different lengths. Moreover, finite-difference time-domain (FDTD) analysis revealed larger fraction of photo-generated charges due to light trapping and distribution due to field convergence via guided modes, and improved light trapping capability at the interface of TNWs/CH3NH3PbI3 compared to bulk TiO2.


2021 ◽  
Vol 24 (3) ◽  
pp. 341-347
Author(s):  
K. Bhavsar ◽  
◽  
P.B. Lapsiwala ◽  

Perovskite solar cells have become a hot topic in the solar energy device area due to high efficiency and low cost photovoltaic technology. However, their function is limited by expensive hole transport material (HTM) and high temperature process electron transport material (ETM) layer is common device structure. Numerical simulation is a crucial technique in deeply understanding the operational mechanisms of solar cells and structure optimization for different devices. In this paper, device modelling for different perovskite solar cell has been performed for different ETM layer, namely: TiO2, ZnO, SnO2, PCBM (phenyl-C61-butyric acid methyl ester), CdZnS, C60, IGZO (indium gallium zinc oxide), WS2 and CdS and effect of band gap upon the power conversion efficiency of device as well as effect of absorber thickness have been examined. The SCAPS 1D (Solar Cell Capacitance Simulator) has been a tool used for numerical simulation of these devices.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2151
Author(s):  
Syed Shah ◽  
Muhammad Sayyad ◽  
Karim Khan ◽  
Jinghua Sun ◽  
Zhongyi Guo

Application of MXene materials in perovskite solar cells (PSCs) has attracted considerable attention owing to their supreme electrical conductivity, excellent carrier mobility, adjustable surface functional groups, excellent transparency and superior mechanical properties. This article reviews the progress made so far in using Ti3C2Tx MXene materials in the building blocks of perovskite solar cells such as electrodes, hole transport layer (HTL), electron transport layer (ETL) and perovskite photoactive layer. Moreover, we provide an outlook on the exciting opportunities this recently developed field offers, and the challenges faced in effectively incorporating MXene materials in the building blocks of PSCs for better operational stability and enhanced performance.


Sign in / Sign up

Export Citation Format

Share Document