Facile synthesis of Co/Pd supported by few-walled carbon nanotubes as an efficient bidirectional catalyst for improving the low temperature hydrogen storage properties of magnesium hydride

2019 ◽  
Vol 7 (10) ◽  
pp. 5277-5287 ◽  
Author(s):  
Meijia Liu ◽  
Xuezhang Xiao ◽  
Shuchun Zhao ◽  
Man Chen ◽  
Jianfeng Mao ◽  
...  

Catalytic doping is important for enhancing the hydrogen storage performance of metal hydrides, but it is challenging to develop a single catalyst to enhance both hydrogen desorption and absorption to a certain degree.

2010 ◽  
Vol 654-656 ◽  
pp. 2843-2846
Author(s):  
Sima Aminorroaya ◽  
Hua Kun Liu

The hydrogen storage performance of ball-milled sample of cast Mg-6 wt% Ni alloy was investigated. Morphology and microstructure of the cast sample and achieved powders were evaluated by high-resolution scanning electron microscopy. The activation characteristics of ball-milled alloy are compared with those of the materials obtained by ball-milling of 5 wt% multi-walled carbon nanotubes (MWCNTs) for 2 hours. MWCNTs enhanced the absorption kinetics considerably. The hydrogen content of modified powder by MWCNTs reached to the maximum hydrogen capacity within two minutes of exposure to hydrogen at 370°C and 2MPa pressure. The evidence is provided that nucleation and growth of hydrides accelerate drastically by homogenously distribution of MWCNTs on the surface of ball-milled powders.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1574
Author(s):  
Ruochen Shen ◽  
Chaohui Pu ◽  
Xiaoou Xu ◽  
Youpeng Xu ◽  
Zhilin Li ◽  
...  

The research aims to study the effect of adding mischmetal (Mm) to the TiFe0.86Mn0.07Co0.07 alloy on its hydrogen storage performance and cyclic stability. The results show that TiFe0.86Mn0.07Co0.07 + x% Mm (x = 0,4,6,8) alloys can be easily activated. The hydrogen absorption capacity of TiFe0.86Mn0.07Co0.07 + 4% Mm reaches 1.76 wt% (mass fraction) at 298 K. With the increase of Mm addition, the hydrogen storage capacity decreases slightly. Furthermore, after 40 absorption and desorption cycles in hydrogen containing 250 ppm O2, the alloy still has 36% of its initial hydrogen storage capacity, and the alloy can recover 93% of its hydrogen storage capacity through heat treatment.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1370 ◽  
Author(s):  
Zhang ◽  
Lu ◽  
Ji ◽  
Yan ◽  
Sun ◽  
...  

Abstract: Catalytic doping plays an important role in enhancing the hydrogen storage performance of MgH2, while finding an efficient and reversible catalyst remains to be a great challenge in enhancing the de/rehydrogenation properties of MgH2. Herein, a bidirectional nano-TiH1.971 catalyst was prepared by a wet chemical ball milling method and its effect on hydrogen storage properties of MgH2 was studied. The results showed that all the TiH1.971 nanoparticles were effective in improving the de/rehydrogenation kinetics of MgH2. The MgH2 composites doped with TiH1.971 could desorb 6.5 wt % H2 in 8 min at 300 °C, while the pure MgH2 only released 0.3 wt % H2 in 8 min and 1.5 wt % H2 even in 50 min. It was found that the smaller the size of the TiH1.971 particles, the better was the catalytic effect in promoting the performance of MgH2. Besides, the catalyst concentration also played an important role and the 5 wt %-c-TiH1.971 modified system was found to have the best hydrogen storage performance. Interestingly, a significant hydrogen absorption amount of 4.60 wt % H2 was evidenced for the 5 wt %-c-TiH1.971 doped MgH2 within 10 min at 125 °C, while MgH2 absorbed only 4.11 wt% hydrogen within the same time at 250 °C. The XRD results demonstrated that the TiH1.971 remained stable in cycling and could serve as an active site for hydrogen transportation, which contributed to the significant improvement of the hydrogen storage properties of MgH2.


Sign in / Sign up

Export Citation Format

Share Document