In situ fluorescent profiling of living cell membrane proteins at a single-molecule level

2019 ◽  
Vol 55 (28) ◽  
pp. 4043-4046 ◽  
Author(s):  
Yuanyuan Fan ◽  
Lu Li ◽  
Meng Lu ◽  
Haibin Si ◽  
Bo Tang

A signal amplification method is developed for visualization analysis of membrane proteins on living cells at a single-molecule level.

2021 ◽  
Vol 11 (8) ◽  
pp. 3317
Author(s):  
C.S. Quintans ◽  
Denis Andrienko ◽  
Katrin F. Domke ◽  
Daniel Aravena ◽  
Sangho Koo ◽  
...  

External electric fields (EEFs) have proven to be very efficient in catalysing chemical reactions, even those inaccessible via wet-chemical synthesis. At the single-molecule level, oriented EEFs have been successfully used to promote in situ single-molecule reactions in the absence of chemical catalysts. Here, we elucidate the effect of an EEFs on the structure and conductance of a molecular junction. Employing scanning tunnelling microscopy break junction (STM-BJ) experiments, we form and electrically characterize single-molecule junctions of two tetramethyl carotene isomers. Two discrete conductance signatures show up more prominently at low and high applied voltages which are univocally ascribed to the trans and cis isomers of the carotenoid, respectively. The difference in conductance between both cis-/trans- isomers is in concordance with previous predictions considering π-quantum interference due to the presence of a single gauche defect in the trans isomer. Electronic structure calculations suggest that the electric field polarizes the molecule and mixes the excited states. The mixed states have a (spectroscopically) allowed transition and, therefore, can both promote the cis-isomerization of the molecule and participate in electron transport. Our work opens new routes for the in situ control of isomerisation reactions in single-molecule contacts.


1996 ◽  
Vol 39 (11) ◽  
pp. 1860-1868 ◽  
Author(s):  
Bruno Stuhlmüller ◽  
Ricardo Jerez ◽  
Gert Hausdorf ◽  
Hans-R. Barthel ◽  
Michael Meurer ◽  
...  

2021 ◽  
Vol 23 (Supplement_4) ◽  
pp. iv9-iv9
Author(s):  
Anya Snary ◽  
Richard Grundy ◽  
Rob Layfield ◽  
Ruman Rahman ◽  
Farhana Haque

Abstract Aims Improvements in the treatments for childhood and adolescent brain tumours, High-Grade Glioma (pHGG) and Diffuse Intrinsic Pontine Glioblastoma (DIPG), have not advanced much and they continue to carry a very poor prognosis. These brain tumours are now defined by mutations affecting histone 3 proteins, indeed 80% of DIPGs harbour histone H3.1 and H3.3 K27M somatic mutations whilst 30% of pHGGs exhibit H3.3 G34R or G34V mutations. We hypothesized that the histone 3 mutant tumours will have distinct mutation specific surfactome (cell membrane proteins) signature. Method We therefore analysed the cell surface proteomics of pHGG and DIPG, in order to identify novel targets for therapy. We have at first isolated the cell membrane fractions from a range of patient cells carrying different histone 3 mutations (G34R, G34V), relative to wild type histone 3. A comparative quantitative mass-spectrometry analyses of these cell surface membrane fractions is then performed. Results The results obtained to date demonstrated unique differential cell membrane expression patterns which correlated to specific mutation type. For example, increased expression of Ras-related proteins Rab-3, Rab-3D is detected only in histone H3.3-G34R mutated cell line in comparison. Conclusion Identification and analyses of these unique cell membrane proteins’ association with specific in H3.3 mutation in pHGG, will help to identify precise mutation specific therapeutic targets, benefiting the patients to receive therapy based on tumour’s molecular signature.


2014 ◽  
Vol 106 (2) ◽  
pp. 559a
Author(s):  
Mohamed Kreir ◽  
Matthias Beckler ◽  
Astrid Seifert ◽  
Conrad Weichbrodt ◽  
Gerhard Baaken ◽  
...  

2017 ◽  
Vol 112 (3) ◽  
pp. 588a
Author(s):  
Marios Sergides ◽  
Tommaso Galgani ◽  
Claudia Arbore ◽  
Francesco S. Pavone ◽  
Marco Capitanio

2011 ◽  
Vol 15 (3) ◽  
pp. 429-431 ◽  
Author(s):  
Rui PEREIRA ◽  
Susana ROCHA ◽  
Ana BORGES ◽  
Henrique NASCIMENTO ◽  
Flávio REIS ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document