Preparation and crystal structures of the beryllium ammines [Be(NH3)4]X2 (X = Br, I, CN, SCN, N3) and Be(NH3)2X'2 (X' = Cl, Br, I)

2019 ◽  
Vol 55 (91) ◽  
pp. 13649-13652 ◽  
Author(s):  
Matthias Müller ◽  
Magnus R. Buchner

Ammine complexes of beryllium halides and pseudo-halides have been synthesized through the reaction of metallic beryllium with ammonium salts in liquid ammonia or in the solid state.

2018 ◽  
Vol 233 (12) ◽  
pp. 817-844 ◽  
Author(s):  
Stefan S. Rudel ◽  
Sebastian A. Baer ◽  
Patrick Woidy ◽  
Thomas G. Müller ◽  
H.-Lars Deubner ◽  
...  

Abstract This article presents an overview of recent advancements in the field of uranium chemistry, paying special attention to the preparation of starting materials and to the chemistry of uranium halides in liquid ammonia. Where suitable, insights into the chemistry of thorium are also presented. Herein, we report upon the crystal structures of several ammine complexes as well as their deprotonation products. Specific examples of hydrolysis products in liquid ammonia are showcased. Additionally, advancements in the preparation of uranium cyanides are presented.


Chemistry ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 199-227
Author(s):  
Young Hoon Lee ◽  
Jee Young Kim ◽  
Sotaro Kusumoto ◽  
Hitomi Ohmagari ◽  
Miki Hasegawa ◽  
...  

Analysis of the weak interactions within the crystal structures of 33 complexes of various 4′-aromatic derivatives of 2,2′:6′,2″-terpyridine (tpy) shows that interactions that exceed dispersion are dominated, as expected, by cation⋯anion contacts but are associated with both ligand–ligand and ligand–solvent contacts, sometimes multicentred, in generally complicated arrays, probably largely determined by dispersion interactions between stacked aromatic units. With V(V) as the coordinating cation, there is evidence that the polarisation of the ligand results in an interaction exceeding dispersion at a carbon bound to nitrogen with oxygen or fluorine, an interaction unseen in the structures of M(II) (M = Fe, Co, Ni, Cu, Zn, Ru and Cd) complexes, except when 1,2,3-trimethoxyphenyl substituents are present in the 4′-tpy.


2001 ◽  
Vol 79 (3) ◽  
pp. 263-271
Author(s):  
Paul K Baker ◽  
Michael GB Drew ◽  
Deborah S Evans

Reaction of [WI2(CO)3(NCMe)2] with two equivalents of 1-phenyl-1-propyne (MeC2Ph) in CH2Cl2, and in the absence of light, gave the bis(1-phenyl-1-propyne) complex [WI2(CO)(NCMe)(η2-MeC2Ph)2] (1) in 77% yield. Treatment of equimolar quantities of 1 and NCR (R = Et, i-Pr, t-Bu, Ph) in CH2Cl2 afforded the nitrile-exchanged products, [WI2(CO)(NCR)(η2-MeC2Ph)2] (2-5) (R = Et (2), i-Pr (3), t-Bu (4), Ph (5)). Complexes 1, 2, and 5 were structurally characterized by X-ray crystallography. All three structures have the same pseudo-octahedral geometry, with the equatorial sites being occupied by cis and parallel alkyne groups, which are trans to the cis-iodo groups. The trans carbon monoxide and acetonitrile ligands occupy the axial sites. In structures 1 and 2, the methyl and phenyl substituents of the 1-phenyl-1-propyne ligands are cis to each other, whereas for the bulkier NCPh complex (5), the methyl and phenyl groups are trans to one another. This is the first time that this arrangement has been observed in the solid state in bis(alkyne) complexes of this type.Key words: bis(1-phenyl-1-propyne), carbonyl, nitrile, diiodo, tungsten(II), crystal structures.


1980 ◽  
Vol 35 (2) ◽  
pp. 237-238 ◽  
Author(s):  
Martin Jansen

Abstract K3NO3 and RbsNO3 were prepared by solid state reaction of equimolar mixtures of K2O/KNO2 and Rb20/RbN02, respectively. According to X-ray powder photographs their crystal structures are derived from the perovs-kite structure. K3NO3 is isostructural with Na3NO3 (a = 521.7 pm, Z = 1), Rb3NO3 represents a tetragonally distorted variant with a = 770.5, c = 550.8 pm and Z = 2.


1965 ◽  
Vol 18 (3) ◽  
pp. 271 ◽  
Author(s):  
IR Anderson ◽  
JC Sheldon

The new compounds, K6Mo3IICl12; (NH4)7Mo3IICl13.H2O; and Cs6Mo4Cl16 (containing molybdenum in oxidation state +2.5) have been precipitated by the appropriate cation from solutions of molybdenum(II) acetate in 12M hydrochloric acid. The absorption spectra of potassium and ammonium salts are similar in the solid state and solution. Since the compounds are strong reducing agents and short-lived in solution, their formulation as a staphylonuclear (i.e. metal-clustered) trimer or tetramer rests on their diamagnetism, stoicheiometry, and spectral similarities. It is proposed that the chloromolybdates adopt entirely novel, compact polymers by stacking the chlorine atoms into "close packed" layers. The Mo3Cl13 group consists of two layers of chlorine atoms (seven and six) generating three octahedral locations for the molybdenum atoms at the corners of a regular triangle. The Mo3Cl12 group is similar but deficient in one chlorine atom. The Mo4Cl16 group is related to Mo3Cl13 and consists of three layers of chlorine atoms (seven, six, and three) providing four octahedral locations for the molybdenum atoms at the corners of a tetrahedron.


2015 ◽  
Vol 71 (10) ◽  
pp. 1230-1235
Author(s):  
Carolina Múnera-Orozco ◽  
Rogelio Ocampo-Cardona ◽  
David L. Cedeño ◽  
Rubén A. Toscano ◽  
Luz Amalia Ríos-Vásquez

In the crystals of the titleN-halomethylated quaternary ammonium salts, C19H23IN+·I−, (I) [systematic name:N-(4,4-diphenylbut-3-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide], C20H25IN+·I−, (II) [systematic name:N-(5,5-diphenylpent-4-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide], and C21H27IN+·I−, (III) [systematic name:N-(6,6-diphenylhex-5-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide], there are short I...I−interactions of 3.564 (4), 3.506 (1) and 3.557 (1) Å for compounds (I), (II) and (III), respectively. Compound (I) crystallizes in the Sohncke groupP21as an `enantiopure' compound and is therefore a potential material for NLO properties. In the crystal of compound (I), molecules are linked by C—H...I−and C—H...π interactions which, together with the I...I−interactions, lead to the formation of ribbons along [100]. In (II), there are only C—H...I−interactions which, together with the I...I−interactions, lead to the formation of helices along [010]. In (III), apart from the I...I−interactions, there are no significant intermolecular interactions present.


Sign in / Sign up

Export Citation Format

Share Document