Single-layer structures of a100- and b010-Gallenene: a tight-binding approach

2019 ◽  
Vol 21 (28) ◽  
pp. 15798-15804 ◽  
Author(s):  
M. Nakhaee ◽  
M. Yagmurcukardes ◽  
S. A. Ketabi ◽  
F. M. Peeters

Using the simplified linear combination of atomic orbitals (LCAO) method in combination with ab initio calculations, we construct a tight-binding (TB) model for two different crystal structures of monolayer gallium: a100- and b010-Gallenene.

Author(s):  
Xudong Weng ◽  
O.F. Sankey ◽  
Peter Rez

Single electron band structure techniques have been applied successfully to the interpretation of the near edge structures of metals and other materials. Among various band theories, the linear combination of atomic orbital (LCAO) method is especially simple and interpretable. The commonly used empirical LCAO method is mainly an interpolation method, where the energies and wave functions of atomic orbitals are adjusted in order to fit experimental or more accurately determined electron states. To achieve better accuracy, the size of calculation has to be expanded, for example, to include excited states and more-distant-neighboring atoms. This tends to sacrifice the simplicity and interpretability of the method.In this paper. we adopt an ab initio scheme which incorporates the conceptual advantage of the LCAO method with the accuracy of ab initio pseudopotential calculations. The so called pscudo-atomic-orbitals (PAO's), computed from a free atom within the local-density approximation and the pseudopotential approximation, are used as the basis of expansion, replacing the usually very large set of plane waves in the conventional pseudopotential method. These PAO's however, do not consist of a rigorously complete set of orthonormal states.


2012 ◽  
Vol 717-720 ◽  
pp. 415-418
Author(s):  
Yoshitaka Umeno ◽  
Kuniaki Yagi ◽  
Hiroyuki Nagasawa

We carry out ab initio density functional theory calculations to investigate the fundamental mechanical properties of stacking faults in 3C-SiC, including the effect of stress and doping atoms (substitution of C by N or Si). Stress induced by stacking fault (SF) formation is quantitatively evaluated. Extrinsic SFs containing double and triple SiC layers are found to be slightly more stable than the single-layer extrinsic SF, supporting experimental observation. Effect of tensile or compressive stress on SF energies is found to be marginal. Neglecting the effect of local strain induced by doping, N doping around an SF obviously increase the SF formation energy, while SFs seem to be easily formed in Si-rich SiC.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7178
Author(s):  
Yanqiang Han ◽  
Hongyuan Luo ◽  
Qianqian Lu ◽  
Zeying Liu ◽  
Jinyun Liu ◽  
...  

The long-acting parenteral formulation of the HIV integrase inhibitor cabotegravir (GSK744) is currently being developed to prevent HIV infections, benefiting from infrequent dosing and high efficacy. The crystal structure can affect the bioavailability and efficacy of cabotegravir. However, the stability determination of crystal structures of GSK744 have remained a challenge. Here, we introduced an ab initio protocol to determine the stability of the crystal structures of pharmaceutical molecules, which were obtained from crystal structure prediction process starting from the molecular diagram. Using GSK744 as a case study, the ab initio predicted that Gibbs free energy provides reliable further refinement of the predicted crystal structures and presents its capability for becoming a crystal stability determination approach in the future. The proposed work can assist in the comprehensive screening of pharmaceutical design and can provide structural predictions and stability evaluation for pharmaceutical crystals.


Sign in / Sign up

Export Citation Format

Share Document