momentum density
Recently Published Documents


TOTAL DOCUMENTS

543
(FIVE YEARS 42)

H-INDEX

38
(FIVE YEARS 4)

2021 ◽  
Vol 7 (1) ◽  
pp. 4
Author(s):  
Kosuke Suzuki ◽  
Yuji Otsuka ◽  
Kazushi Hoshi ◽  
Hiroshi Sakurai ◽  
Naruki Tsuji ◽  
...  

The redox process in a lithium-ion battery occurs when a conduction electron from the lithium anode is transferred to the redox orbital of the cathode. Understanding the nature of orbitals involved in anionic as well as cationic redox reactions is important for improving the capacity and energy density of Li-ion batteries. In this connection, we have obtained magnetic Compton profiles (MCPs) from the Li-rich cation-disordered rock-salt compound LixTi0.4Mn0.4O2 (LTMO). The MCPs, which involved the scattering of circularly polarized hard X-rays, are given by the momentum density of all the unpaired spins in the material. The net magnetic moment in the ground state can be extracted from the area under the MCP, along with a SQUID measurement. Our analysis gives insight into the role of Mn 3d magnetic electrons and O 2p holes in the magnetic redox properties of LTMO.


2021 ◽  
Author(s):  
Sangwha Yi

We find the energy-momentum density of electromagnetic field by energy-momentum tensor ofelectromagnetic field in Rindler space-time. We find the energy-momentum density’s conservation law of electromagnetic field in Rindler spacetime


Author(s):  
Shuguan Ji ◽  
Yonghui Zhou

In this paper, we mainly study several problems on the weakly dissipative generalized Novikov equation. We first establish the local well-posedness of solutions. We then give the precise blow-up scenarios for the generalized Novikov equation provided the momentum density associated with their initial data changes sign, and obtain the blow-up rate of blow-up solutions. Finally, we prove that the equation has a global solution provided the momentum density associated with their initial data do not change sign.


Author(s):  
Yoshio Matsuki ◽  
Petro Bidyuk

In this research we simulated how time can be reversed with a rotating strong gravity. At first, we assumed that the time and the space can be distorted with the presence of a strong gravity, and then we calculated the angular momentum density of the rotating gravitational field. For this simulation we used Einstein’s field equation with spherical polar coordinates and the Euler’s transformation matrix to simulate the rotation. We also assumed that the stress-energy tensor that is placed at the end of the strong gravitational field reflects the intensities of the angular momentum, which is the normal (perpendicular) vector to the rotating axis. The result of the simulation shows that the angular momentum of the rotating strong gravity changes its directions from plus (the future) to minus (the past) and from minus (the past) to plus (the future), depending on the frequency of the rotation.


2021 ◽  
Vol 3 (5) ◽  
pp. 7-10
Author(s):  
Sergey A. Gerasimov

The linear momentum density carried by electromagnetic fields creates the hidden force acting on the displacement current between ends of an unclosed conductor with alternative electric current. This force compensates the self-force exerted by the unclosed conductor with zero thin. The magnetic field produced by displacement current does not contribute to the force acting on the conductor. The unclosed conductor can move under action of the self-force. At small heights of cylindrical open conductor, the reactive force equivalent to the self-force becomes very large


2021 ◽  
Vol 104 (7) ◽  
Author(s):  
Josef Ketels ◽  
David Billington ◽  
Stephen B. Dugdale ◽  
Michael Leitner ◽  
Christoph P. Hugenschmidt

2021 ◽  
Vol 16 (5) ◽  
pp. 838-843
Author(s):  
Yan Zhang ◽  
Minru Hao ◽  
Min Shao ◽  
Yunzhe Zhang

We theoretically analyze the linear momentum density and orbital angular momentum (OAM) propagation characteristics of Gaussian vortex beams in free space, and perform detailed numerical simulation analysis of the linear momentum density and OAM propagation characteristics. Further, we study the variation of the propagation characteristics with different topological charges. In addition, we also analyzed the position of momentum in the transverse profile, where the momentum density of the spot will be broadened with propagation distance. This study can provide guidance for using vortex beams in optical communication and manipulation.


2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Ruihua Fan ◽  
Yingfei Gu ◽  
Ashvin Vishwanath ◽  
Xueda Wen

In this work, we study non-equilibrium dynamics in Floquet conformal field theories (CFTs) in 1+1D, in which the driving Hamiltonian involves the energy-momentum density spatially modulated by an arbitrary smooth function. This generalizes earlier work which was restricted to the sine-square deformed type of Floquet Hamiltonians, operating within a \mathfrak{sl}_2𝔰𝔩2 sub-algebra. Here we show remarkably that the problem remains soluble in this generalized case which involves the full Virasoro algebra, based on a geometrical approach. It is found that the phase diagram is determined by the stroboscopic trajectories of operator evolution. The presence/absence of spatial fixed points in the operator evolution indicates that the driven CFT is in a heating/non-heating phase, in which the entanglement entropy grows/oscillates in time. Additionally, the heating regime is further subdivided into a multitude of phases, with different entanglement patterns and spatial distribution of energy-momentum density, which are characterized by the number of spatial fixed points. Phase transitions between these different heating phases can be achieved simply by changing the duration of application of the driving Hamiltonian. %In general, there are rich internal structures in the heating phase characterized by different numbers of spatial fixed points, which result in different entanglement patterns and distribution of energy-momentum density in space. %Interestingly, after each driving cycle, these spatial fixed points will shuffle to each other in the array, and come back to the original locations after pp (p\ge 1p≥1) driving cycles. We demonstrate the general features with concrete CFT examples and compare the results to lattice calculations and find remarkable agreement.


Sign in / Sign up

Export Citation Format

Share Document