Emerging investigator series: protein adsorption and transformation on catalytic and food-grade TiO2 nanoparticles in the presence of dissolved organic carbon

2019 ◽  
Vol 6 (6) ◽  
pp. 1688-1703 ◽  
Author(s):  
Junyeol Kim ◽  
Kyle Doudrick

The adsorption and unfolding behavior of bovine serum albumin onto catalytic- and food-grade titanium dioxide nanoparticles is dependent on the surface chemistry of the nanoparticles and their environmental exposure history.

2020 ◽  
Vol 54 (9) ◽  
pp. 883-890
Author(s):  
Wendy Phoswa ◽  
Preenan Pillay ◽  
Ajit Kumar ◽  
Kogi Moodley ◽  
Irene Mackraj

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4269 ◽  
Author(s):  
Ewa Paradowska ◽  
Katarzyna Arkusz ◽  
Dorota G. Pijanowska

The increasing interest of attachment of gold nanoparticles (AuNPs) on titanium dioxide nanotubes (TNTs) has been devoted to obtaining tremendous properties suitable for biosensor applications. Achieving precise control of the attachment and shape of AuNPs by methods described in the literature are far from satisfactory. This work shows the comparison of physical adsorption (PA), cyclic voltammetry (CV) and chronoamperometry (CA) methods and the parameters of these methods on TNTs properties. The structural, chemical, phase and electrochemical characterizations of TNTs, Au/TNTs, AuNPs/TNTs are carried out using scanning electron microscopy (SEM), electrochemical impedance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy. The use of PA methods does not allow the deposition of AuNPs on TNTs. CV allows easily obtaining spherical nanoparticles, for which the diameter increases from 20.3 ± 2.9 nm to 182.3 ± 51.7 nm as a concentration of tetrachloroauric acid solution increase from 0.1 mM to 10 mM. Increasing the AuNPs deposition time in the CA method increases the amount of gold, but the AuNPs diameter does not change (35.0 ± 5 nm). Importantly, the CA method also causes the dissolution of the nanotubes layer from 1000 ± 10.0 nm to 823 ± 15.3 nm. Modification of titanium dioxide nanotubes with gold nanoparticles improved the electron transfer and increased the corrosion resistance, as well as promoted the protein adsorption. Importantly, after the deposition of bovine serum albumin, an almost 5.5-fold (324%) increase in real impedance, compared to TNTs (59%) was observed. We found that the Au nanoparticles—especially those with smaller diameter—promoted the stability of bovine serum albumin binding to the TNTs platform. It confirms that the modification of TNTs with gold nanoparticles allows the development of the best platform for biosensing applications.


2021 ◽  
Vol 18 (4) ◽  
pp. 177
Author(s):  
A. M. Eid ◽  
Shea Kraemer ◽  
Hind A. Al-Abadleh

Environmental contextHematite nanoparticles are efficient adsorbents for proteins and pollutants in environmental and biological systems. Hematite and the protein bovine serum albumin (BSA) were used as models to investigate the surface chemistry and competitive role of BSA in arsenate adsorption. Results show that surface BSA inhibits arsenate adsorption, potentially altering its mobility and bioavailability. AbstractThe surface chemistry of metal oxide nanomaterials controls their health impacts and fate in environmental and biological systems. These systems contain proteins capable of binding to nanoparticles, which forms a protein corona that modifies the surface properties of the nanoparticles and reactivity towards pollutants. Using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, we investigate the adsorption of bovine serum albumin (BSA) and quantify the competitive effect of BSA on the adsorption kinetics of arsenate, AsV, to hematite nanoparticles. Experiments were conducted in the flow mode at pH 7. BSA was first adsorbed on hematite, then AsV was allowed to flow over the BSA/hematite thin film. Adsorption kinetic and thermodynamic parameters were calculated using a modified Langmuir adsorption model for both BSA and AsV. The adsorption thermodynamic model showed that BSA binds through two active sites with a binding energy of –41 kJ mol−1, which corresponds to the spontaneous formation of chemisorbed and physisorbed species. When AsV flowed over the BSA/hematite film, only 11 % of surface BSA was desorbed by AsV. This result highlights the inhibitory effect of BSA for AsV adsorption. Structural analysis of BSA revealed changes to the local conformational geometry upon adsorption to and desorption from hematite nanoparticles. Molecular docking simulations showed that the binding free energy of a modelled hematite nanoparticle towards the BSA surface is –6.8 kcal mol−1 (−28.5 kJ mol−1) owing to the formation of various bonds, which agrees with the adsorption kinetics modelling. Overall, surface BSA inhibits arsenate adsorption and therefore increases its mobility and bioavailability.


Soft Matter ◽  
2021 ◽  
Author(s):  
Priyanshi Agnihotri ◽  
Sangeeta Jangra ◽  
Shikha Aery ◽  
Abhijit Dan

Herein, we report controlled protein adsorption and delivery of thermo- and pH-responsive poly(N-isopropylacrylamide-co-methacrylic acid) (PNIPAM-co-MAA) microgels at different temperatures, pH values and ionic strengths by employing bovine serum albumin (BSA)...


2012 ◽  
Vol 51 (13) ◽  
pp. 1351-1354 ◽  
Author(s):  
N. Riyasudheen ◽  
P. Binsy ◽  
K. K. Aswini ◽  
Janisha Jayadevan ◽  
Sujith Athiyanathil

Sign in / Sign up

Export Citation Format

Share Document