Studies on the bioactivities and molecular mechanism of antioxidant peptides by 3D-QSAR, in vitro evaluation and molecular dynamic simulations

2020 ◽  
Vol 11 (4) ◽  
pp. 3043-3052 ◽  
Author(s):  
Wenli Yan ◽  
Guimei Lin ◽  
Rong Zhang ◽  
Zhen Liang ◽  
Wenjuan Wu

The bioactivities and molecular mechanism of two novel antioxidant peptides were investigated by 3D-QSAR, in vitro evaluation and MD simulations.

2018 ◽  
Vol 20 (31) ◽  
pp. 20588-20596 ◽  
Author(s):  
Luisa D’Urso ◽  
Marcello Condorelli ◽  
Orazio Puglisi ◽  
Carmelo Tempra ◽  
Fabio Lolicato ◽  
...  

We report a structural investigation on IAPP, Aβ(1–40) and their equimolar mixture at nM concentration using SERS spectroscopy and molecular dynamic simulations.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 118
Author(s):  
Siao Chen ◽  
Yi He ◽  
Yajiao Geng ◽  
Zhi Wang ◽  
Lu Han ◽  
...  

Bromodomain and extra-terminal domain (BET) subfamily is the most studied subfamily of bromodomain-containing proteins (BCPs) family which can modulate acetylation signal transduction and produce diverse physiological functions. Thus, the BET family can be treated as an alternative strategy for targeting androgen-receptor (AR)-driven cancers. In order to explore the effect of inhibitors binding to BRD4 (the most studied member of BET family), four 150 ns molecular dynamic simulations were performed (free BRD4, Cpd4-BRD4, Cpd9-BRD4 and Cpd19-BRD4). Docking studies showed that Cpd9 and Cpd19 were located at the active pocket, as well as Cpd4. Molecular dynamics (MD) simulations indicated that only Cpd19 binding to BRD4 can induce residue Trp81-Ala89 partly become α-helix during MD simulations. MM-GBSA calculations suggested that Cpd19 had the best binding effect with BRD4 followed by Cpd4 and Cpd9. Computational alanine scanning results indicated that mutations in Phe83 made the greatest effects in Cpd9-BRD4 and Cpd19-BRD4 complexes, showing that Phe83 may play crucial roles in Cpd9 and Cpd19 binding to BRD4. Our results can provide some useful clues for further BCPs family search.


2021 ◽  
Vol 22 (24) ◽  
pp. 13587
Author(s):  
Sijin Chen ◽  
Xiaoyan Ding ◽  
Chao Sun ◽  
Anthony Watts ◽  
Xiao He ◽  
...  

Aromatic residues are highly conserved in microbial photoreceptors and play crucial roles in the dynamic regulation of receptor functions. However, little is known about the dynamic mechanism of the functional role of those highly conserved aromatic residues during the receptor photocycle. Tyrosine 185 (Y185) is a highly conserved aromatic residue within the retinal binding pocket of bacteriorhodopsin (bR). In this study, we explored the molecular mechanism of the dynamic coupling of Y185 with the bR photocycle by automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) calculations and molecular dynamic (MD) simulations based on chemical shifts obtained by 2D solid-state NMR correlation experiments. We observed that Y185 plays a significant role in regulating the retinal cis–trans thermal equilibrium, stabilizing the pentagonal H-bond network, participating in the orientation switch of Schiff Base (SB) nitrogen, and opening the F42 gate by interacting with the retinal and several key residues along the proton translocation channel. Our findings provide a detailed molecular mechanism of the dynamic couplings of Y185 and the bR photocycle from a structural perspective. The method used in this paper may be applied to the study of other microbial photoreceptors.


Sign in / Sign up

Export Citation Format

Share Document