scholarly journals Construction of 1D conductive Ni-MOF nanorods with fast Li+ kinetic diffusion and stable high-rate capacities as an anode for lithium ion batteries

2019 ◽  
Vol 1 (12) ◽  
pp. 4688-4691 ◽  
Author(s):  
Lingzhi Guo ◽  
Jinfeng Sun ◽  
Xuan Sun ◽  
Jinyang Zhang ◽  
Linrui Hou ◽  
...  

1D conductive Ni-CAT nanorods with a superb Li+ diffusion coefficient and electronic conductivity exhibited remarkable electrochemical lithium storage properties, and the charge-storage mechanism involved was rationally put forward.

Nanoscale ◽  
2014 ◽  
Vol 6 (17) ◽  
pp. 10243-10254 ◽  
Author(s):  
Uttam Kumar Sen ◽  
Priya Johari ◽  
Sohini Basu ◽  
Chandrani Nayak ◽  
Sagar Mitra

Experimental evidence and theoretical correlation of the formation of elemental sulphur during the discharge process of MoS2, a high rate lithium ion battery anode.


2017 ◽  
Vol 5 (30) ◽  
pp. 15661-15668 ◽  
Author(s):  
Justin M. Whiteley ◽  
Simon Hafner ◽  
Sang Sub Han ◽  
Seul Cham Kim ◽  
Viet-Duc Le ◽  
...  

A lithium charge storage mechanism is discovered at the interface of nano-crystallites of LiTiS2in the solid state. The surface titanium atoms can be reduced reversibly at higher voltages. Electrochemically, this appears as a pseudocapacitive effect boosting capacity greater than theoretical at high rate with no liquid electrolyte.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1638 ◽  
Author(s):  
Wu ◽  
Miao ◽  
Zhou ◽  
Zhang ◽  
Liu ◽  
...  

Construction of a suitable hybrid structure has been considered an important approach to address the defects of metal sulfide anode materials. V3S4 nanosheets anchored on an N, S co-coped graphene (VS/NSG) aerogel were successfully fabricated by an efficient self-assembled strategy. During the heat treatment process, decomposition, sulfuration and N, S co-doping occurred. This hybrid structure was not only endowed with an enhanced capability to buffer the volume expansion, but also improved electron conductivity as a result of the conductive network that had been constructed. The dominating pseudocapacitive contribution (57.78% at 1 mV s−1) enhanced the electrochemical performance effectively. When serving as anode material for lithium ion batteries, VS/NSG exhibits excellent lithium storage properties, including high rate capacity (480 and 330 mAh g−1 at 5 and 10 A g−1, respectively) and stable cyclic performance (692 mAh g−1 after 400 cycles at 2 A g−1).


2021 ◽  
pp. 100928
Author(s):  
Silvio Scaravonati ◽  
Michele Sidoli ◽  
Giacomo Magnani ◽  
Alberto Morenghi ◽  
Marcello Canova ◽  
...  

2021 ◽  
Vol 33 (12) ◽  
pp. 2170093
Author(s):  
Hongsen Li ◽  
Zhengqiang Hu ◽  
Qingtao Xia ◽  
Hao Zhang ◽  
Zhaohui Li ◽  
...  

BMC Energy ◽  
2019 ◽  
Vol 1 (1) ◽  
Author(s):  
A. W. Holland ◽  
A. Cruden ◽  
A. Zerey ◽  
A. Hector ◽  
R. G. A. Wills

AbstractThis communication elucidates the charge storage mechanism of a TiO2 electrode in 1 mol dm− 3 AlCl3 for use in aqueous-ion batteries. Cyclic voltammetry studies suggest a surface contribution to charge storage and that cycle life can be improved by limiting the potential ≥ − 1.0 V vs SCE. In order to enhance this surface contribution, a simple vacuum impregnation technique was employed to improve electrode-electrolyte contact. This resulted in a significant improvement in the high rate performance of TiO2, where a capacity of 15 mA h g− 1 was maintained at the very high specific current of 40 A g− 1, a decrease of only 25% from when the electrode was cycled at 1 A g− 1. The vacuum impregnation process was also applied to copper-hexacyanoferrate, envisaged as a possible positive electrode, again resulting in significant improvements to high-rate performance. This demonstrates the potential for using this simple technique for improving electrode performance in other aqueous electrolyte battery systems.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 24
Author(s):  
Ji Yan ◽  
Xin-Bo Chang ◽  
Xiao-Kai Ma ◽  
Heng Wang ◽  
Yong Zhang ◽  
...  

Phosphorization of metal oxides/hydoxides to promote electronic conductivity as a promising strategy has attracted enormous attention for improving the electrochemical properties of anode material in lithium ion batteries. For this article, selective phosphorization from NiCo2O4 to NiO/Ni2Co4P3 microspheres was realized as an efficient route to enhance the electrochemical lithium storage properties of bimetal Ni-Co based anode materials. The results show that varying phosphorizaed reagent amount can significantly affect the transformation of crystalline structure from NiCo2O4 to intermediate NiO, hybrid NiO/Ni2Co4P3, and, finally, to Ni2Co4P3, during which alterated sphere morphology, shifted surface valance, and enhanced lithium-ion storage behavior are detected. The optimized phosphorization with 1:3 reagent mass ratio can maintain the spherical architecture, hold hybrid crystal structure, and improve the reversibly electrochemical lithium-ion storage properties. A specific capacity of 415 mAh g−1 is achieved at 100 mA g−1 specific current and maintains at 106 mAh g−1 when the specific current increases to 5000 mA g−1. Even after 200 cycles at 500 mA g−1, the optimized electrode still delivers 224 mAh g−1 of specific capacity, exhibiting desirable cycling stability. We believe that understanding of such selective phosphorization can further evoke a particular research enthusiasm for anode materials in lithium ion battery with high performances.


2021 ◽  
Author(s):  
Praanav Lodha

<p>This literature review explains the construction and charge storage mechanisms in Lithium-ion batteries. Further, it elaborates on the electrode reactions in Lithium-ion batteries, and commonly used electrode materials and their structures. Different types of Lithium-based batteries’ electrochemical performance were compared, in addition to other relevant differentiators. The energy storage mechanism in Supercapacitors is briefly touched upon – and the electrochemical performance of supercapacitors is compared with that of lithium-ion batteries. Battery supercapacitor hybrids are introduced, with a brief section on their development over the past two decades following explanations of the charge storage mechanism and construction of battery supercapacitor hybrids. Battery supercapacitor hybrids are then compared with existing electrochemical energy storage mechanisms and finally, two types of battery supercapacitor hybrids were discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document