scholarly journals A study on the aromatic conjugation pathways and the ring currents of bridged [18]annulenes

RSC Advances ◽  
2019 ◽  
Vol 9 (44) ◽  
pp. 25351-25357
Author(s):  
Qimanguli Tuoheti ◽  
Ablikim Kerim

The topological resonance energy method was used to investigate the global aromaticity of a set of [18]annulene-derived compounds obtained by replacing two, four, or all six of the inner hydrogen atoms with bridges (oxygen, imino-, sulfur, or combinations of the three).

2016 ◽  
Vol 15 (07) ◽  
pp. 1650057
Author(s):  
Xiao-Yan Hou ◽  
Ablikim Kerim

The local aromaticity of fullerene C[Formula: see text] ([Formula: see text] was studied using the bond resonance energy (BRE) method. The global aromaticity of all 349 possible isomers of C[Formula: see text]H2 based on [Formula: see text] symmetry was investigated using the topological resonance energy (TRE) method. The TRE results show that most of the C[Formula: see text]H2 isomers have greater stability than C[Formula: see text] ([Formula: see text]. Based on the BRE results, the preferred addition sites of hydrogen atoms are discussed. The relationship between the addition sites and BREs is analyzed and discussed. We found that the addition sites of hydrogen atoms are strongly dependent on the magnitude of the parent cage BRE values. The most stable isomers of C[Formula: see text]H2 are often produced by diminishing of the [Formula: see text]-bonds from those sites in the parent cage at which are located the two carbon atoms with the lowest BRE values. Based on this rule, the preferred addition patterns for non-IPR fullerene cages can be easily predicted.


RSC Advances ◽  
2016 ◽  
Vol 6 (110) ◽  
pp. 108538-108544 ◽  
Author(s):  
Rahila Mattohti ◽  
Ablikim Kerim

The global aromaticity of azaazulenes has been investigated using topological resonance energy (TRE), percentage topological resonance energy (% TRE), and magnetic resonance energy (MRE) methods.


2018 ◽  
Vol 17 (01) ◽  
pp. 1850006
Author(s):  
Bi Xiao Yun ◽  
Ablikim Kerim

The global aromaticity of dithienopyridine and dithienobenzene isomers was investigated using the topological resonance energy (TRE) and percentage topological resonance energy (%TRE) methods. The effect of variations in the positions of sulfur and nitrogen atoms on [Formula: see text]-electron delocalization is analyzed. The local aromaticity of these isomers is described based on the bond resonance energy (BRE) and circuit resonance energy (CRE) methods. Our BRE and CRE results show that structure of the central six-membered rings has a strong effect on global aromaticity. The aromaticity of these dithienopyridine isomers is enhanced when a complete pyridine unit exists in their middle ring structure, while the aromaticity of the dithienobenzene isomers is enhanced when a complete benzene unit exists in their middle ring structure. For dithienopyridines, our results obtained using the TRE method correlate well with the Bird aromaticity index as reported in the literature. Our ring-current results show that all these compounds are diatropic systems.


2020 ◽  
Vol 7 (7) ◽  
pp. 200069
Author(s):  
Maimaitijiang Tuersun ◽  
Ablikim Kerim

In this paper, topological resonance energy (TRE) methods were used to describe the global aromaticity of nitrogen confused porphyrin (NCP) isomers. The TRE results show that all NCP isomers exhibit lower aromaticity than the normal porphyrins, and their aromaticity decreases as the number of confused pyrrole rings in the molecule increases. In the NCPs, global aromaticity decreases as the distance between the nitrogen atoms increases. The bond resonance energy (BRE) and circuit resonance energy (CRE) indices were applied to study local aromaticity and conjugated pathways. Both the BRE and CRE indices revealed that individual pyrrolic subunits maintain their strong aromatic character and are the main source of global aromaticity. Ring currents (RC) were analysed using the Hückel–London model. RC results revealed that the macrocyclic electron conjugation pathway is the main source of diatropicity. As the number of confused pyrrole rings in the molecule increases, its diatropicity gradually decreases. In the confused pyrrole rings of the NCP isomers, the diatropic RC passing through the β -positions is always weaker than that passing through the inner sections. This is unrelated to the location of the protonated or non-protonated nitrogen atom at the periphery of the molecule and must be ascribed to the unique properties of the confused pyrrole rings.


The rates of dehydrogenation in competition experiments using mixtures of two naphthenes, or a naphthene and a cyclic mono-olefine or two cyclic mono-olefines, have been examined theoretically and experimentally for the stationary state conditions. Provided the two reactants can occupy the same sites on the catalyst surface, then the ratio of the rates should be directly proportional to the ratio of the partial pressures at any instant. Theory suggests that a constant which can be derived from these competition experiments should be independent of the overall pressures, or of the initial ratio of concentrations or of the overall extent of dehydrogenation. Further, the ratio of the rates in competition should bear no simple relationship to the ratio of the individual rates alone, but should be related to the slopes of the 1/rate against 1/pressure plot for the two components considered separately. Moreover, the constant should be a ratio of two functions each of which is characteristic of one of the naphthenes. The theoretical conclusions have been confirmed experimentally which proves either that the groups of active sites on the catalyst surface are widely separated or that any set of sites is available for the reaction of any molecular species, and no interference takes place between naphthene molecules adsorbed on adjacent sites. Proof that a naphthene and cyclohexene are dehydrogenated on the same sites is supplied by the observation that a constant is obtained when different mixtures of cyclohexene and trans -1:4-dimethyl cyclohexane are allowed to compete for the surface. The ratios for methyl, ethyl, the three dimethyl and the three trimethyl cyclohexanes in competition with cyclohexane have been accurately determined at temperatures of 400 and 450° C. From the constants so derived the activation energy differences for the removal of the first pair of hydrogen atoms has been obtained. These values are discussed in terms of the possible transition complexes, and it is shown that the reaction proceeds by the loss of a pair of hydrogen atoms simultaneously and not by a half-hydrogenated state mechanism. Using these activation energies and the experimentally found overall activation energy of 36 kcal./g. mol., the resonance energy per resonating structure was determined as 1-73 kcal. This is in good agreement with the energies of C-H bonds in alkyl radicals (2-2 kcal./g.mol./ resonating structure). The theoretical treatment suggests that the weakest C-H link in methyl cyclohexane should be in the three position to the methyl group. A study of the activation energies involved shows that the methyl cyclohexene produced from methyl cyclohexane is not 1-methyl-1-cyclohexene, thus confirming the theoretical deduction.


Open Physics ◽  
2010 ◽  
Vol 8 (1) ◽  
Author(s):  
Randell Mills ◽  
William Good ◽  
Peter Jansson ◽  
Jiliang He

AbstractRb+ to Rb2+ and 2K+ to K + K2+ each provide a reaction with a net enthalpy equal to the potential energy of atomic hydrogen. The presence of these gaseous ions with thermally dissociated hydrogen formed a plasma having strong VUV emission with a stationary inverted Lyman population. Significant Balmer α line broadening of 18 and 9 eV was observed from a rt-plasma of hydrogen with KNO3, and RbNO3, respectively, compared to 3 eV from a hydrogen microwave plasma. The reaction was exothermic since excess power of about 20 mW/cc was measured by Calvet calorimetry. We propose an energetic catalytic reaction involving a resonance energy transfer between hydrogen atoms and Rb+ or 2K+ to form a very stable novel hydride ion. Its predicted binding energy of 3.0471 eV with the fine structure was observed at 4071 Å, and its predicted bound-free hyperfine structure lines matched those observed for about 40 lines to within.01 percent. Characteristic emission from each catalyst was observed. This catalytic reaction may pump a CW HI laser.


Sign in / Sign up

Export Citation Format

Share Document